Shortcuts

Source code for qdrant_client.async_client_base

# ******  WARNING: THIS FILE IS AUTOGENERATED  ******
#
# This file is autogenerated. Do not edit it manually.
# To regenerate this file, use
#
# ```
# bash -x tools/generate_async_client.sh
# ```
#
# ******  WARNING: THIS FILE IS AUTOGENERATED  ******

from typing import Any, Dict, Iterable, List, Mapping, Optional, Sequence, Tuple, Union
from qdrant_client.conversions import common_types as types
from qdrant_client.http import models


[docs]class AsyncQdrantBase: def __init__(self, **kwargs: Any): pass
[docs] async def search_batch( self, collection_name: str, requests: Sequence[types.SearchRequest], **kwargs: Any ) -> List[List[types.ScoredPoint]]: raise NotImplementedError()
[docs] async def search( self, collection_name: str, query_vector: Union[ types.NumpyArray, Sequence[float], Tuple[str, List[float]], types.NamedVector, types.NamedSparseVector, ], query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, **kwargs: Any, ) -> List[types.ScoredPoint]: raise NotImplementedError()
[docs] async def search_groups( self, collection_name: str, query_vector: Union[ types.NumpyArray, Sequence[float], Tuple[str, List[float]], types.NamedVector, types.NamedSparseVector, ], group_by: str, query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, group_size: int = 1, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, **kwargs: Any, ) -> types.GroupsResult: raise NotImplementedError()
[docs] async def search_matrix_offsets( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, **kwargs: Any, ) -> types.SearchMatrixOffsetsResponse: raise NotImplementedError()
[docs] async def search_matrix_pairs( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, **kwargs: Any, ) -> types.SearchMatrixPairsResponse: raise NotImplementedError()
[docs] async def query_batch_points( self, collection_name: str, requests: Sequence[types.QueryRequest], **kwargs: Any ) -> List[types.QueryResponse]: raise NotImplementedError()
[docs] async def query_points( self, collection_name: str, query: Union[ types.PointId, List[float], List[List[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, List[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, lookup_from: Optional[types.LookupLocation] = None, **kwargs: Any, ) -> types.QueryResponse: raise NotImplementedError()
[docs] async def query_points_groups( self, collection_name: str, group_by: str, query: Union[ types.PointId, List[float], List[List[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, List[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, group_size: int = 3, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, lookup_from: Optional[types.LookupLocation] = None, **kwargs: Any, ) -> types.GroupsResult: raise NotImplementedError()
[docs] async def recommend_batch( self, collection_name: str, requests: Sequence[types.RecommendRequest], **kwargs: Any ) -> List[List[types.ScoredPoint]]: raise NotImplementedError()
[docs] async def recommend( self, collection_name: str, positive: Optional[Sequence[types.RecommendExample]] = None, negative: Optional[Sequence[types.RecommendExample]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, List[str], types.PayloadSelector] = True, with_vectors: Union[bool, List[str]] = False, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, strategy: Optional[types.RecommendStrategy] = None, **kwargs: Any, ) -> List[types.ScoredPoint]: raise NotImplementedError()
[docs] async def recommend_groups( self, collection_name: str, group_by: str, positive: Optional[Sequence[types.RecommendExample]] = None, negative: Optional[Sequence[types.RecommendExample]] = None, query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, group_size: int = 1, score_threshold: Optional[float] = None, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, using: Optional[str] = None, lookup_from: Optional[models.LookupLocation] = None, with_lookup: Optional[types.WithLookupInterface] = None, strategy: Optional[types.RecommendStrategy] = None, **kwargs: Any, ) -> types.GroupsResult: raise NotImplementedError()
[docs] async def discover( self, collection_name: str, target: Optional[types.TargetVector] = None, context: Optional[Sequence[types.ContextExamplePair]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, List[str], types.PayloadSelector] = True, with_vectors: Union[bool, List[str]] = False, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, **kwargs: Any, ) -> List[types.ScoredPoint]: raise NotImplementedError()
[docs] async def discover_batch( self, collection_name: str, requests: Sequence[types.DiscoverRequest], **kwargs: Any ) -> List[List[types.ScoredPoint]]: raise NotImplementedError()
[docs] async def scroll( self, collection_name: str, scroll_filter: Optional[types.Filter] = None, limit: int = 10, order_by: Optional[types.OrderBy] = None, offset: Optional[types.PointId] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, **kwargs: Any, ) -> Tuple[List[types.Record], Optional[types.PointId]]: raise NotImplementedError()
[docs] async def count( self, collection_name: str, count_filter: Optional[types.Filter] = None, exact: bool = True, **kwargs: Any, ) -> types.CountResult: raise NotImplementedError()
[docs] async def facet( self, collection_name: str, key: str, facet_filter: Optional[types.Filter] = None, limit: int = 10, exact: bool = False, **kwargs: Any, ) -> types.FacetResponse: raise NotImplementedError()
[docs] async def upsert( self, collection_name: str, points: types.Points, **kwargs: Any ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def update_vectors( self, collection_name: str, points: Sequence[types.PointVectors], **kwargs: Any ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def delete_vectors( self, collection_name: str, vectors: Sequence[str], points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def retrieve( self, collection_name: str, ids: Sequence[types.PointId], with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, **kwargs: Any, ) -> List[types.Record]: raise NotImplementedError()
[docs] async def delete( self, collection_name: str, points_selector: types.PointsSelector, **kwargs: Any ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def set_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, key: Optional[str] = None, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def overwrite_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def delete_payload( self, collection_name: str, keys: Sequence[str], points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def clear_payload( self, collection_name: str, points_selector: types.PointsSelector, **kwargs: Any ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def batch_update_points( self, collection_name: str, update_operations: Sequence[types.UpdateOperation], **kwargs: Any, ) -> List[types.UpdateResult]: raise NotImplementedError()
[docs] async def update_collection_aliases( self, change_aliases_operations: Sequence[types.AliasOperations], **kwargs: Any ) -> bool: raise NotImplementedError()
[docs] async def get_collection_aliases( self, collection_name: str, **kwargs: Any ) -> types.CollectionsAliasesResponse: raise NotImplementedError()
[docs] async def get_aliases(self, **kwargs: Any) -> types.CollectionsAliasesResponse: raise NotImplementedError()
[docs] async def get_collections(self, **kwargs: Any) -> types.CollectionsResponse: raise NotImplementedError()
[docs] async def get_collection(self, collection_name: str, **kwargs: Any) -> types.CollectionInfo: raise NotImplementedError()
[docs] async def collection_exists(self, collection_name: str, **kwargs: Any) -> bool: raise NotImplementedError()
[docs] async def update_collection(self, collection_name: str, **kwargs: Any) -> bool: raise NotImplementedError()
[docs] async def delete_collection(self, collection_name: str, **kwargs: Any) -> bool: raise NotImplementedError()
[docs] async def create_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] async def recreate_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] def upload_records( self, collection_name: str, records: Iterable[types.Record], **kwargs: Any ) -> None: raise NotImplementedError()
[docs] def upload_points( self, collection_name: str, points: Iterable[types.PointStruct], **kwargs: Any ) -> None: raise NotImplementedError()
[docs] def upload_collection( self, collection_name: str, vectors: Union[ Dict[str, types.NumpyArray], types.NumpyArray, Iterable[types.VectorStruct] ], payload: Optional[Iterable[Dict[Any, Any]]] = None, ids: Optional[Iterable[types.PointId]] = None, **kwargs: Any, ) -> None: raise NotImplementedError()
[docs] async def create_payload_index( self, collection_name: str, field_name: str, field_schema: Optional[types.PayloadSchemaType] = None, field_type: Optional[types.PayloadSchemaType] = None, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def delete_payload_index( self, collection_name: str, field_name: str, **kwargs: Any ) -> types.UpdateResult: raise NotImplementedError()
[docs] async def list_snapshots( self, collection_name: str, **kwargs: Any ) -> List[types.SnapshotDescription]: raise NotImplementedError()
[docs] async def create_snapshot( self, collection_name: str, **kwargs: Any ) -> Optional[types.SnapshotDescription]: raise NotImplementedError()
[docs] async def delete_snapshot( self, collection_name: str, snapshot_name: str, **kwargs: Any ) -> Optional[bool]: raise NotImplementedError()
[docs] async def list_full_snapshots(self, **kwargs: Any) -> List[types.SnapshotDescription]: raise NotImplementedError()
[docs] async def create_full_snapshot(self, **kwargs: Any) -> Optional[types.SnapshotDescription]: raise NotImplementedError()
[docs] async def delete_full_snapshot(self, snapshot_name: str, **kwargs: Any) -> Optional[bool]: raise NotImplementedError()
[docs] async def recover_snapshot( self, collection_name: str, location: str, **kwargs: Any ) -> Optional[bool]: raise NotImplementedError()
[docs] async def list_shard_snapshots( self, collection_name: str, shard_id: int, **kwargs: Any ) -> List[types.SnapshotDescription]: raise NotImplementedError()
[docs] async def create_shard_snapshot( self, collection_name: str, shard_id: int, **kwargs: Any ) -> Optional[types.SnapshotDescription]: raise NotImplementedError()
[docs] async def delete_shard_snapshot( self, collection_name: str, shard_id: int, snapshot_name: str, **kwargs: Any ) -> Optional[bool]: raise NotImplementedError()
[docs] async def recover_shard_snapshot( self, collection_name: str, shard_id: int, location: str, **kwargs: Any ) -> Optional[bool]: raise NotImplementedError()
[docs] async def lock_storage(self, reason: str, **kwargs: Any) -> types.LocksOption: raise NotImplementedError()
[docs] async def unlock_storage(self, **kwargs: Any) -> types.LocksOption: raise NotImplementedError()
[docs] async def get_locks(self, **kwargs: Any) -> types.LocksOption: raise NotImplementedError()
[docs] async def close(self, **kwargs: Any) -> None: pass
[docs] def migrate( self, dest_client: "AsyncQdrantBase", collection_names: Optional[List[str]] = None, batch_size: int = 100, recreate_on_collision: bool = False, ) -> None: raise NotImplementedError()
[docs] async def create_shard_key( self, collection_name: str, shard_key: types.ShardKey, shards_number: Optional[int] = None, replication_factor: Optional[int] = None, placement: Optional[List[int]] = None, **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] async def delete_shard_key( self, collection_name: str, shard_key: types.ShardKey, **kwargs: Any ) -> bool: raise NotImplementedError()
[docs] async def info(self) -> types.VersionInfo: raise NotImplementedError()

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community