Shortcuts

Source code for qdrant_client.async_qdrant_fastembed

# ******  WARNING: THIS FILE IS AUTOGENERATED  ******
#
# This file is autogenerated. Do not edit it manually.
# To regenerate this file, use
#
# ```
# bash -x tools/generate_async_client.sh
# ```
#
# ******  WARNING: THIS FILE IS AUTOGENERATED  ******

import uuid
import warnings
from itertools import tee
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union, get_args, Set
import numpy as np
from qdrant_client import grpc
from qdrant_client.async_client_base import AsyncQdrantBase
from qdrant_client.conversions import common_types as types
from qdrant_client.conversions.conversion import GrpcToRest
from qdrant_client.embed.models import Document
from qdrant_client.fastembed_common import QueryResponse
from qdrant_client.http import models
from qdrant_client.hybrid.fusion import reciprocal_rank_fusion

try:
    from fastembed import SparseTextEmbedding, TextEmbedding
    from fastembed.common import OnnxProvider
except ImportError:
    TextEmbedding = None
    SparseTextEmbedding = None
    OnnxProvider = None
SUPPORTED_EMBEDDING_MODELS: Dict[str, Tuple[int, models.Distance]] = (
    {
        model["model"]: (model["dim"], models.Distance.COSINE)
        for model in TextEmbedding.list_supported_models()
    }
    if TextEmbedding
    else {}
)
SUPPORTED_SPARSE_EMBEDDING_MODELS: Dict[str, Tuple[int, models.Distance]] = (
    {model["model"]: model for model in SparseTextEmbedding.list_supported_models()}
    if SparseTextEmbedding
    else {}
)
IDF_EMBEDDING_MODELS: Set[str] = (
    {
        model_config["model"]
        for model_config in SparseTextEmbedding.list_supported_models()
        if model_config.get("requires_idf", None)
    }
    if SparseTextEmbedding
    else set()
)


[docs]class AsyncQdrantFastembedMixin(AsyncQdrantBase): DEFAULT_EMBEDDING_MODEL = "BAAI/bge-small-en" embedding_models: Dict[str, "TextEmbedding"] = {} sparse_embedding_models: Dict[str, "SparseTextEmbedding"] = {} _FASTEMBED_INSTALLED: bool def __init__(self, **kwargs: Any): self._embedding_model_name: Optional[str] = None self._sparse_embedding_model_name: Optional[str] = None try: from fastembed import SparseTextEmbedding, TextEmbedding assert len(SparseTextEmbedding.list_supported_models()) > 0 assert len(TextEmbedding.list_supported_models()) > 0 self.__class__._FASTEMBED_INSTALLED = True except ImportError: self.__class__._FASTEMBED_INSTALLED = False super().__init__(**kwargs) @property def embedding_model_name(self) -> str: if self._embedding_model_name is None: self._embedding_model_name = self.DEFAULT_EMBEDDING_MODEL return self._embedding_model_name @property def sparse_embedding_model_name(self) -> Optional[str]: return self._sparse_embedding_model_name
[docs] def set_model( self, embedding_model_name: str, max_length: Optional[int] = None, cache_dir: Optional[str] = None, threads: Optional[int] = None, providers: Optional[Sequence["OnnxProvider"]] = None, **kwargs: Any, ) -> None: """ Set embedding model to use for encoding documents and queries. Args: embedding_model_name: One of the supported embedding models. See `SUPPORTED_EMBEDDING_MODELS` for details. max_length (int, optional): Deprecated. Defaults to None. cache_dir (str, optional): The path to the cache directory. Can be set using the `FASTEMBED_CACHE_PATH` env variable. Defaults to `fastembed_cache` in the system's temp directory. threads (int, optional): The number of threads single onnxruntime session can use. Defaults to None. providers: The list of onnx providers (with or without options) to use. Defaults to None. Example configuration: https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#configuration-options Raises: ValueError: If embedding model is not supported. ImportError: If fastembed is not installed. Returns: None """ if max_length is not None: warnings.warn( "max_length parameter is deprecated and will be removed in the future. It's not used by fastembed models.", DeprecationWarning, stacklevel=2, ) self._get_or_init_model( model_name=embedding_model_name, cache_dir=cache_dir, threads=threads, providers=providers, **kwargs, ) self._embedding_model_name = embedding_model_name
[docs] def set_sparse_model( self, embedding_model_name: Optional[str], cache_dir: Optional[str] = None, threads: Optional[int] = None, providers: Optional[Sequence["OnnxProvider"]] = None, **kwargs: Any, ) -> None: """ Set sparse embedding model to use for hybrid search over documents in combination with dense embeddings. Args: embedding_model_name: One of the supported sparse embedding models. See `SUPPORTED_SPARSE_EMBEDDING_MODELS` for details. If None, sparse embeddings will not be used. cache_dir (str, optional): The path to the cache directory. Can be set using the `FASTEMBED_CACHE_PATH` env variable. Defaults to `fastembed_cache` in the system's temp directory. threads (int, optional): The number of threads single onnxruntime session can use. Defaults to None. providers: The list of onnx providers (with or without options) to use. Defaults to None. Example configuration: https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#configuration-options Raises: ValueError: If embedding model is not supported. ImportError: If fastembed is not installed. Returns: None """ if embedding_model_name is not None: self._get_or_init_sparse_model( model_name=embedding_model_name, cache_dir=cache_dir, threads=threads, providers=providers, **kwargs, ) self._sparse_embedding_model_name = embedding_model_name
@classmethod def _import_fastembed(cls) -> None: if cls._FASTEMBED_INSTALLED: return raise ImportError( "fastembed is not installed. Please install it to enable fast vector indexing with `pip install fastembed`." ) @classmethod def _get_model_params(cls, model_name: str) -> Tuple[int, models.Distance]: cls._import_fastembed() if model_name not in SUPPORTED_EMBEDDING_MODELS: raise ValueError( f"Unsupported embedding model: {model_name}. Supported models: {SUPPORTED_EMBEDDING_MODELS}" ) return SUPPORTED_EMBEDDING_MODELS[model_name] @classmethod def _get_or_init_model( cls, model_name: str, cache_dir: Optional[str] = None, threads: Optional[int] = None, providers: Optional[Sequence["OnnxProvider"]] = None, **kwargs: Any, ) -> "TextEmbedding": if model_name in cls.embedding_models: return cls.embedding_models[model_name] cls._import_fastembed() if model_name not in SUPPORTED_EMBEDDING_MODELS: raise ValueError( f"Unsupported embedding model: {model_name}. Supported models: {SUPPORTED_EMBEDDING_MODELS}" ) cls.embedding_models[model_name] = TextEmbedding( model_name=model_name, cache_dir=cache_dir, threads=threads, providers=providers, **kwargs, ) return cls.embedding_models[model_name] @classmethod def _get_or_init_sparse_model( cls, model_name: str, cache_dir: Optional[str] = None, threads: Optional[int] = None, providers: Optional[Sequence["OnnxProvider"]] = None, **kwargs: Any, ) -> "SparseTextEmbedding": if model_name in cls.sparse_embedding_models: return cls.sparse_embedding_models[model_name] cls._import_fastembed() if model_name not in SUPPORTED_SPARSE_EMBEDDING_MODELS: raise ValueError( f"Unsupported embedding model: {model_name}. Supported models: {SUPPORTED_SPARSE_EMBEDDING_MODELS}" ) cls.sparse_embedding_models[model_name] = SparseTextEmbedding( model_name=model_name, cache_dir=cache_dir, threads=threads, providers=providers, **kwargs, ) return cls.sparse_embedding_models[model_name] def _embed_documents( self, documents: Iterable[str], embedding_model_name: str = DEFAULT_EMBEDDING_MODEL, batch_size: int = 32, embed_type: str = "default", parallel: Optional[int] = None, ) -> Iterable[Tuple[str, List[float]]]: embedding_model = self._get_or_init_model(model_name=embedding_model_name) (documents_a, documents_b) = tee(documents, 2) if embed_type == "passage": vectors_iter = embedding_model.passage_embed( documents_a, batch_size=batch_size, parallel=parallel ) elif embed_type == "query": vectors_iter = ( list(embedding_model.query_embed(query=query))[0] for query in documents_a ) elif embed_type == "default": vectors_iter = embedding_model.embed( documents_a, batch_size=batch_size, parallel=parallel ) else: raise ValueError(f"Unknown embed type: {embed_type}") for vector, doc in zip(vectors_iter, documents_b): yield (doc, vector.tolist()) def _sparse_embed_documents( self, documents: Iterable[str], embedding_model_name: str = DEFAULT_EMBEDDING_MODEL, batch_size: int = 32, parallel: Optional[int] = None, ) -> Iterable[types.SparseVector]: sparse_embedding_model = self._get_or_init_sparse_model(model_name=embedding_model_name) vectors_iter = sparse_embedding_model.embed( documents, batch_size=batch_size, parallel=parallel ) for sparse_vector in vectors_iter: yield types.SparseVector( indices=sparse_vector.indices.tolist(), values=sparse_vector.values.tolist() )
[docs] def get_vector_field_name(self) -> str: """ Returns name of the vector field in qdrant collection, used by current fastembed model. Returns: Name of the vector field. """ model_name = self.embedding_model_name.split("/")[-1].lower() return f"fast-{model_name}"
[docs] def get_sparse_vector_field_name(self) -> Optional[str]: """ Returns name of the vector field in qdrant collection, used by current fastembed model. Returns: Name of the vector field. """ if self.sparse_embedding_model_name is not None: model_name = self.sparse_embedding_model_name.split("/")[-1].lower() return f"fast-sparse-{model_name}" return None
def _scored_points_to_query_responses( self, scored_points: List[types.ScoredPoint] ) -> List[QueryResponse]: response = [] vector_field_name = self.get_vector_field_name() sparse_vector_field_name = self.get_sparse_vector_field_name() for scored_point in scored_points: embedding = ( scored_point.vector.get(vector_field_name, None) if isinstance(scored_point.vector, Dict) else None ) sparse_embedding = None if sparse_vector_field_name is not None: sparse_embedding = ( scored_point.vector.get(sparse_vector_field_name, None) if isinstance(scored_point.vector, Dict) else None ) response.append( QueryResponse( id=scored_point.id, embedding=embedding, sparse_embedding=sparse_embedding, metadata=scored_point.payload, document=scored_point.payload.get("document", ""), score=scored_point.score, ) ) return response def _points_iterator( self, ids: Optional[Iterable[models.ExtendedPointId]], metadata: Optional[Iterable[Dict[str, Any]]], encoded_docs: Iterable[Tuple[str, List[float]]], ids_accumulator: list, sparse_vectors: Optional[Iterable[types.SparseVector]] = None, ) -> Iterable[models.PointStruct]: if ids is None: ids = iter(lambda: uuid.uuid4().hex, None) if metadata is None: metadata = iter(lambda: {}, None) if sparse_vectors is None: sparse_vectors = iter(lambda: None, True) vector_name = self.get_vector_field_name() sparse_vector_name = self.get_sparse_vector_field_name() for idx, meta, (doc, vector), sparse_vector in zip( ids, metadata, encoded_docs, sparse_vectors ): ids_accumulator.append(idx) payload = {"document": doc, **meta} point_vector: Dict[str, models.Vector] = {vector_name: vector} if sparse_vector_name is not None and sparse_vector is not None: point_vector[sparse_vector_name] = sparse_vector yield models.PointStruct(id=idx, payload=payload, vector=point_vector) def _validate_collection_info(self, collection_info: models.CollectionInfo) -> None: (embeddings_size, distance) = self._get_model_params(model_name=self.embedding_model_name) vector_field_name = self.get_vector_field_name() assert isinstance( collection_info.config.params.vectors, dict ), f"Collection have incompatible vector params: {collection_info.config.params.vectors}" assert ( vector_field_name in collection_info.config.params.vectors ), f"Collection have incompatible vector params: {collection_info.config.params.vectors}, expected {vector_field_name}" vector_params = collection_info.config.params.vectors[vector_field_name] assert ( embeddings_size == vector_params.size ), f"Embedding size mismatch: {embeddings_size} != {vector_params.size}" assert ( distance == vector_params.distance ), f"Distance mismatch: {distance} != {vector_params.distance}" sparse_vector_field_name = self.get_sparse_vector_field_name() if sparse_vector_field_name is not None: assert ( sparse_vector_field_name in collection_info.config.params.sparse_vectors ), f"Collection have incompatible vector params: {collection_info.config.params.vectors}" if self.sparse_embedding_model_name in IDF_EMBEDDING_MODELS: modifier = collection_info.config.params.sparse_vectors[ sparse_vector_field_name ].modifier assert ( modifier == models.Modifier.IDF ), f"{self.sparse_embedding_model_name} requires modifier IDF, current modifier is {modifier}"
[docs] def get_fastembed_vector_params( self, on_disk: Optional[bool] = None, quantization_config: Optional[models.QuantizationConfig] = None, hnsw_config: Optional[models.HnswConfigDiff] = None, ) -> Dict[str, models.VectorParams]: """ Generates vector configuration, compatible with fastembed models. Args: on_disk: if True, vectors will be stored on disk. If None, default value will be used. quantization_config: Quantization configuration. If None, quantization will be disabled. hnsw_config: HNSW configuration. If None, default configuration will be used. Returns: Configuration for `vectors_config` argument in `create_collection` method. """ vector_field_name = self.get_vector_field_name() (embeddings_size, distance) = self._get_model_params(model_name=self.embedding_model_name) return { vector_field_name: models.VectorParams( size=embeddings_size, distance=distance, on_disk=on_disk, quantization_config=quantization_config, hnsw_config=hnsw_config, ) }
[docs] def get_fastembed_sparse_vector_params( self, on_disk: Optional[bool] = None, modifier: Optional[models.Modifier] = None ) -> Optional[Dict[str, models.SparseVectorParams]]: """ Generates vector configuration, compatible with fastembed sparse models. Args: on_disk: if True, vectors will be stored on disk. If None, default value will be used. modifier: Sparse vector queries modifier. E.g. Modifier.IDF for idf-based rescoring. Default: None. Returns: Configuration for `vectors_config` argument in `create_collection` method. """ vector_field_name = self.get_sparse_vector_field_name() if self.sparse_embedding_model_name in IDF_EMBEDDING_MODELS: modifier = models.Modifier.IDF if modifier is None else modifier if vector_field_name is None: return None return { vector_field_name: models.SparseVectorParams( index=models.SparseIndexParams(on_disk=on_disk), modifier=modifier ) }
[docs] async def add( self, collection_name: str, documents: Iterable[str], metadata: Optional[Iterable[Dict[str, Any]]] = None, ids: Optional[Iterable[models.ExtendedPointId]] = None, batch_size: int = 32, parallel: Optional[int] = None, **kwargs: Any, ) -> List[Union[str, int]]: """ Adds text documents into qdrant collection. If collection does not exist, it will be created with default parameters. Metadata in combination with documents will be added as payload. Documents will be embedded using the specified embedding model. If you want to use your own vectors, use `upsert` method instead. Args: collection_name (str): Name of the collection to add documents to. documents (Iterable[str]): List of documents to embed and add to the collection. metadata (Iterable[Dict[str, Any]], optional): List of metadata dicts. Defaults to None. ids (Iterable[models.ExtendedPointId], optional): List of ids to assign to documents. If not specified, UUIDs will be generated. Defaults to None. batch_size (int, optional): How many documents to embed and upload in single request. Defaults to 32. parallel (Optional[int], optional): How many parallel workers to use for embedding. Defaults to None. If number is specified, data-parallel process will be used. Raises: ImportError: If fastembed is not installed. Returns: List of IDs of added documents. If no ids provided, UUIDs will be randomly generated on client side. """ encoded_docs = self._embed_documents( documents=documents, embedding_model_name=self.embedding_model_name, batch_size=batch_size, embed_type="passage", parallel=parallel, ) encoded_sparse_docs = None if self.sparse_embedding_model_name is not None: encoded_sparse_docs = self._sparse_embed_documents( documents=documents, embedding_model_name=self.sparse_embedding_model_name, batch_size=batch_size, parallel=parallel, ) try: collection_info = await self.get_collection(collection_name=collection_name) except Exception: await self.create_collection( collection_name=collection_name, vectors_config=self.get_fastembed_vector_params(), sparse_vectors_config=self.get_fastembed_sparse_vector_params(), ) collection_info = await self.get_collection(collection_name=collection_name) self._validate_collection_info(collection_info) inserted_ids: list = [] points = self._points_iterator( ids=ids, metadata=metadata, encoded_docs=encoded_docs, ids_accumulator=inserted_ids, sparse_vectors=encoded_sparse_docs, ) self.upload_points( collection_name=collection_name, points=points, wait=True, parallel=parallel or 1, batch_size=batch_size, **kwargs, ) return inserted_ids
def _resolve_query_to_embedding_embeddings_and_prefetch( self, query: Union[ types.PointId, List[float], List[List[float]], types.SparseVector, types.Query, types.NumpyArray, Document, None, ], prefetch: Union[models.Prefetch, List[models.Prefetch], None] = None, ) -> Tuple[Optional[models.Query], List[models.Prefetch]]: query = self._resolve_query_to_embedding_embeddings(query=query) if prefetch is None: prefetch = [] if not isinstance(prefetch, list): prefetch = [prefetch] return (query, prefetch) def _resolve_query_to_embedding_embeddings( self, query: Union[ types.PointId, List[float], List[List[float]], types.SparseVector, types.Query, types.NumpyArray, Document, None, ], ) -> Optional[models.Query]: if isinstance(query, get_args(types.Query)) or isinstance(query, grpc.Query): return query if isinstance(query, types.SparseVector): return models.NearestQuery(nearest=query) if isinstance(query, np.ndarray): return models.NearestQuery(nearest=query.tolist()) if isinstance(query, list): return models.NearestQuery(nearest=query) if isinstance(query, get_args(types.PointId)): query = ( GrpcToRest.convert_point_id(query) if isinstance(query, grpc.PointId) else query ) return models.NearestQuery(nearest=query) if query is None: return None if isinstance(query, Document): model_name = query.model if model_name is None: raise ValueError( "`query_points` requires explicit model name specification for `Document`" ) if model_name in SUPPORTED_EMBEDDING_MODELS: self.set_model(model_name) embedding_model_inst = self._get_or_init_model(model_name=model_name) embedding = list(embedding_model_inst.embed(documents=[query.text]))[0].tolist() elif model_name in SUPPORTED_SPARSE_EMBEDDING_MODELS: self.set_sparse_model(model_name) sparse_embedding_model_inst = self._get_or_init_sparse_model(model_name=model_name) embedding = list(sparse_embedding_model_inst.embed(documents=[query.text]))[0] embedding = models.SparseVector( indices=embedding.indices.tolist(), values=embedding.values.tolist() ) else: raise ValueError(f"{model_name} is not among supported models") return models.NearestQuery(nearest=embedding) raise ValueError(f"Unsupported query type: {type(query)}")
[docs] async def query( self, collection_name: str, query_text: str, query_filter: Optional[models.Filter] = None, limit: int = 10, **kwargs: Any, ) -> List[QueryResponse]: """ Search for documents in a collection. This method automatically embeds the query text using the specified embedding model. If you want to use your own query vector, use `search` method instead. Args: collection_name: Collection to search in query_text: Text to search for. This text will be embedded using the specified embedding model. And then used as a query vector. query_filter: - Exclude vectors which doesn't fit given conditions. - If `None` - search among all vectors limit: How many results return **kwargs: Additional search parameters. See `qdrant_client.models.SearchRequest` for details. Returns: List[types.ScoredPoint]: List of scored points. """ embedding_model_inst = self._get_or_init_model(model_name=self.embedding_model_name) embeddings = list(embedding_model_inst.query_embed(query=query_text)) query_vector = embeddings[0].tolist() if self.sparse_embedding_model_name is None: return self._scored_points_to_query_responses( await self.search( collection_name=collection_name, query_vector=models.NamedVector( name=self.get_vector_field_name(), vector=query_vector ), query_filter=query_filter, limit=limit, with_payload=True, **kwargs, ) ) sparse_embedding_model_inst = self._get_or_init_sparse_model( model_name=self.sparse_embedding_model_name ) sparse_vector = list(sparse_embedding_model_inst.query_embed(query=query_text))[0] sparse_query_vector = models.SparseVector( indices=sparse_vector.indices.tolist(), values=sparse_vector.values.tolist() ) dense_request = models.SearchRequest( vector=models.NamedVector(name=self.get_vector_field_name(), vector=query_vector), filter=query_filter, limit=limit, with_payload=True, **kwargs, ) sparse_request = models.SearchRequest( vector=models.NamedSparseVector( name=self.get_sparse_vector_field_name(), vector=sparse_query_vector ), filter=query_filter, limit=limit, with_payload=True, **kwargs, ) (dense_request_response, sparse_request_response) = await self.search_batch( collection_name=collection_name, requests=[dense_request, sparse_request] ) return self._scored_points_to_query_responses( reciprocal_rank_fusion([dense_request_response, sparse_request_response], limit=limit) )
[docs] async def query_batch( self, collection_name: str, query_texts: List[str], query_filter: Optional[models.Filter] = None, limit: int = 10, **kwargs: Any, ) -> List[List[QueryResponse]]: """ Search for documents in a collection with batched query. This method automatically embeds the query text using the specified embedding model. Args: collection_name: Collection to search in query_texts: A list of texts to search for. Each text will be embedded using the specified embedding model. And then used as a query vector for a separate search requests. query_filter: - Exclude vectors which doesn't fit given conditions. - If `None` - search among all vectors This filter will be applied to all search requests. limit: How many results return **kwargs: Additional search parameters. See `qdrant_client.models.SearchRequest` for details. Returns: List[List[QueryResponse]]: List of lists of responses for each query text. """ embedding_model_inst = self._get_or_init_model(model_name=self.embedding_model_name) query_vectors = list(embedding_model_inst.query_embed(query=query_texts)) requests = [] for vector in query_vectors: request = models.SearchRequest( vector=models.NamedVector( name=self.get_vector_field_name(), vector=vector.tolist() ), filter=query_filter, limit=limit, with_payload=True, **kwargs, ) requests.append(request) if self.sparse_embedding_model_name is None: responses = await self.search_batch(collection_name=collection_name, requests=requests) return [self._scored_points_to_query_responses(response) for response in responses] sparse_embedding_model_inst = self._get_or_init_sparse_model( model_name=self.sparse_embedding_model_name ) sparse_query_vectors = [ models.SparseVector( indices=sparse_vector.indices.tolist(), values=sparse_vector.values.tolist() ) for sparse_vector in sparse_embedding_model_inst.embed(documents=query_texts) ] for sparse_vector in sparse_query_vectors: request = models.SearchRequest( vector=models.NamedSparseVector( name=self.get_sparse_vector_field_name(), vector=sparse_vector ), filter=query_filter, limit=limit, with_payload=True, **kwargs, ) requests.append(request) responses = await self.search_batch(collection_name=collection_name, requests=requests) dense_responses = responses[: len(query_texts)] sparse_responses = responses[len(query_texts) :] responses = [ reciprocal_rank_fusion([dense_response, sparse_response], limit=limit) for (dense_response, sparse_response) in zip(dense_responses, sparse_responses) ] return [self._scored_points_to_query_responses(response) for response in responses]

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community