Shortcuts

Source code for qdrant_client.async_qdrant_remote

# ******  WARNING: THIS FILE IS AUTOGENERATED  ******
#
# This file is autogenerated. Do not edit it manually.
# To regenerate this file, use
#
# ```
# bash -x tools/generate_async_client.sh
# ```
#
# ******  WARNING: THIS FILE IS AUTOGENERATED  ******

import importlib.metadata
import math
import platform
from multiprocessing import get_all_start_methods
from typing import (
    Any,
    Awaitable,
    Callable,
    Iterable,
    Mapping,
    Optional,
    Sequence,
    Type,
    Union,
    get_args,
)
import httpx
import numpy as np
from grpc import Compression
from urllib3.util import Url, parse_url
from qdrant_client.common.client_warnings import show_warning, show_warning_once
from qdrant_client import grpc as grpc
from qdrant_client._pydantic_compat import construct
from qdrant_client.auth import BearerAuth
from qdrant_client.async_client_base import AsyncQdrantBase
from qdrant_client.common.version_check import is_compatible, get_server_version
from qdrant_client.connection import get_async_channel as get_channel
from qdrant_client.conversions import common_types as types
from qdrant_client.conversions.common_types import get_args_subscribed
from qdrant_client.conversions.conversion import (
    GrpcToRest,
    RestToGrpc,
    grpc_payload_schema_to_field_type,
)
from qdrant_client.http import AsyncApiClient, AsyncApis, models
from qdrant_client.parallel_processor import ParallelWorkerPool
from qdrant_client.uploader.grpc_uploader import GrpcBatchUploader
from qdrant_client.uploader.rest_uploader import RestBatchUploader
from qdrant_client.uploader.uploader import BaseUploader


[docs]class AsyncQdrantRemote(AsyncQdrantBase): DEFAULT_GRPC_TIMEOUT = 5 def __init__( self, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[int] = None, host: Optional[str] = None, grpc_options: Optional[dict[str, Any]] = None, auth_token_provider: Optional[ Union[Callable[[], str], Callable[[], Awaitable[str]]] ] = None, check_compatibility: bool = True, **kwargs: Any, ): super().__init__(**kwargs) self._prefer_grpc = prefer_grpc self._grpc_port = grpc_port self._grpc_options = grpc_options or {} self._https = https if https is not None else api_key is not None self._scheme = "https" if self._https else "http" self._prefix = prefix or "" if len(self._prefix) > 0 and self._prefix[0] != "/": self._prefix = f"/{self._prefix}" if url is not None and host is not None: raise ValueError(f"Only one of (url, host) can be set. url is {url}, host is {host}") if host is not None and (host.startswith("http://") or host.startswith("https://")): raise ValueError( f"`host` param is not expected to contain protocol (http:// or https://). Try to use `url` parameter instead." ) elif url: if url.startswith("localhost"): url = f"//{url}" parsed_url: Url = parse_url(url) (self._host, self._port) = (parsed_url.host, parsed_url.port) if parsed_url.scheme: self._https = parsed_url.scheme == "https" self._scheme = parsed_url.scheme self._port = self._port if self._port else port if self._prefix and parsed_url.path: raise ValueError( f"Prefix can be set either in `url` or in `prefix`. url is {url}, prefix is {parsed_url.path}" ) elif parsed_url.path: self._prefix = parsed_url.path if self._scheme not in ("http", "https"): raise ValueError(f"Unknown scheme: {self._scheme}") else: self._host = host or "localhost" self._port = port _timeout = math.ceil(timeout) if timeout is not None else None self._api_key = api_key self._auth_token_provider = auth_token_provider limits = kwargs.pop("limits", None) if limits is None: if self._host in ["localhost", "127.0.0.1"]: limits = httpx.Limits(max_connections=None, max_keepalive_connections=0) http2 = kwargs.pop("http2", False) self._grpc_headers = [] self._rest_headers = kwargs.pop("metadata", {}) if api_key is not None: if self._scheme == "http": show_warning( message="Api key is used with an insecure connection.", category=UserWarning, stacklevel=4, ) self._rest_headers["api-key"] = api_key self._grpc_headers.append(("api-key", api_key)) client_version = importlib.metadata.version("qdrant-client") python_version = platform.python_version() user_agent = f"qdrant-client/{client_version} python/{python_version}" self._rest_headers["User-Agent"] = user_agent self._grpc_options["grpc.primary_user_agent"] = user_agent grpc_compression: Optional[Compression] = kwargs.pop("grpc_compression", None) if grpc_compression is not None and (not isinstance(grpc_compression, Compression)): raise TypeError( f"Expected 'grpc_compression' to be of type grpc.Compression or None, but got {type(grpc_compression)}" ) if grpc_compression == Compression.Deflate: raise ValueError( "grpc.Compression.Deflate is not supported. Try grpc.Compression.Gzip or grpc.Compression.NoCompression" ) self._grpc_compression = grpc_compression address = f"{self._host}:{self._port}" if self._port is not None else self._host self.rest_uri = f"{self._scheme}://{address}{self._prefix}" self._rest_args = {"headers": self._rest_headers, "http2": http2, **kwargs} if limits is not None: self._rest_args["limits"] = limits if _timeout is not None: self._rest_args["timeout"] = _timeout self._timeout = _timeout else: self._timeout = self.DEFAULT_GRPC_TIMEOUT if self._auth_token_provider is not None: if self._scheme == "http": show_warning( message="Auth token provider is used with an insecure connection.", category=UserWarning, stacklevel=4, ) bearer_auth = BearerAuth(self._auth_token_provider) self._rest_args["auth"] = bearer_auth self.openapi_client: AsyncApis[AsyncApiClient] = AsyncApis( host=self.rest_uri, **self._rest_args ) self._grpc_channel = None self._grpc_points_client: Optional[grpc.PointsStub] = None self._grpc_collections_client: Optional[grpc.CollectionsStub] = None self._grpc_snapshots_client: Optional[grpc.SnapshotsStub] = None self._grpc_root_client: Optional[grpc.QdrantStub] = None self._closed: bool = False if check_compatibility: client_version = importlib.metadata.version("qdrant-client") server_version = get_server_version( self.rest_uri, self._rest_headers, self._rest_args.get("auth") ) if not server_version: show_warning( message=f"Failed to obtain server version. Unable to check client-server compatibility. Set check_version=False to skip version check.", category=UserWarning, stacklevel=4, ) elif not is_compatible(client_version, server_version): show_warning( message=f"Qdrant client version {client_version} is incompatible with server version {server_version}. Major versions should match and minor version difference must not exceed 1. Set check_version=False to skip version check.", category=UserWarning, stacklevel=4, ) @property def closed(self) -> bool: return self._closed
[docs] async def close(self, grpc_grace: Optional[float] = None, **kwargs: Any) -> None: if hasattr(self, "_grpc_channel") and self._grpc_channel is not None: try: await self._grpc_channel.close(grace=grpc_grace) except AttributeError: show_warning( message="Unable to close grpc_channel. Connection was interrupted on the server side", category=UserWarning, stacklevel=4, ) except RuntimeError: pass try: await self.http.aclose() except Exception: show_warning( message="Unable to close http connection. Connection was interrupted on the server side", category=UserWarning, stacklevel=4, ) self._closed = True
@staticmethod def _parse_url(url: str) -> tuple[Optional[str], str, Optional[int], Optional[str]]: parse_result: Url = parse_url(url) (scheme, host, port, prefix) = ( parse_result.scheme, parse_result.host, parse_result.port, parse_result.path, ) return (scheme, host, port, prefix) def _init_grpc_channel(self) -> None: if self._closed: raise RuntimeError("Client was closed. Please create a new QdrantClient instance.") if self._grpc_channel is None: self._grpc_channel = get_channel( host=self._host, port=self._grpc_port, ssl=self._https, metadata=self._grpc_headers, options=self._grpc_options, compression=self._grpc_compression, auth_token_provider=self._auth_token_provider, ) def _init_grpc_points_client(self) -> None: self._init_grpc_channel() self._grpc_points_client = grpc.PointsStub(self._grpc_channel) def _init_grpc_collections_client(self) -> None: self._init_grpc_channel() self._grpc_collections_client = grpc.CollectionsStub(self._grpc_channel) def _init_grpc_snapshots_client(self) -> None: self._init_grpc_channel() self._grpc_snapshots_client = grpc.SnapshotsStub(self._grpc_channel) def _init_grpc_root_client(self) -> None: self._init_grpc_channel() self._grpc_root_client = grpc.QdrantStub(self._grpc_channel) @property def grpc_collections(self) -> grpc.CollectionsStub: """gRPC client for collections methods Returns: An instance of raw gRPC client, generated from Protobuf """ if self._grpc_collections_client is None: self._init_grpc_collections_client() return self._grpc_collections_client @property def grpc_points(self) -> grpc.PointsStub: """gRPC client for points methods Returns: An instance of raw gRPC client, generated from Protobuf """ if self._grpc_points_client is None: self._init_grpc_points_client() return self._grpc_points_client @property def grpc_snapshots(self) -> grpc.SnapshotsStub: """gRPC client for snapshots methods Returns: An instance of raw gRPC client, generated from Protobuf """ if self._grpc_snapshots_client is None: self._init_grpc_snapshots_client() return self._grpc_snapshots_client @property def grpc_root(self) -> grpc.QdrantStub: """gRPC client for info methods Returns: An instance of raw gRPC client, generated from Protobuf """ if self._grpc_root_client is None: self._init_grpc_root_client() return self._grpc_root_client @property def rest(self) -> AsyncApis[AsyncApiClient]: """REST Client Returns: An instance of raw REST API client, generated from OpenAPI schema """ return self.openapi_client @property def http(self) -> AsyncApis[AsyncApiClient]: """REST Client Returns: An instance of raw REST API client, generated from OpenAPI schema """ return self.openapi_client
[docs] async def search_batch( self, collection_name: str, requests: Sequence[types.SearchRequest], consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[list[types.ScoredPoint]]: if self._prefer_grpc: requests = [ RestToGrpc.convert_search_request(r, collection_name) if isinstance(r, models.SearchRequest) else r for r in requests ] if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) grpc_res: grpc.SearchBatchResponse = await self.grpc_points.SearchBatch( grpc.SearchBatchPoints( collection_name=collection_name, search_points=requests, read_consistency=consistency, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [ [GrpcToRest.convert_scored_point(hit) for hit in r.result] for r in grpc_res.result ] else: requests = [ GrpcToRest.convert_search_points(r) if isinstance(r, grpc.SearchPoints) else r for r in requests ] http_res: Optional[list[list[models.ScoredPoint]]] = ( await self.http.search_api.search_batch_points( collection_name=collection_name, consistency=consistency, timeout=timeout, search_request_batch=models.SearchRequestBatch(searches=requests), ) ).result assert http_res is not None, "Search batch returned None" return http_res
[docs] async def search( self, collection_name: str, query_vector: Union[ Sequence[float], tuple[str, list[float]], types.NamedVector, types.NamedSparseVector, types.NumpyArray, ], query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, append_payload: bool = True, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: if not append_payload: show_warning_once( message="Usage of `append_payload` is deprecated. Please consider using `with_payload` instead", category=DeprecationWarning, stacklevel=5, idx="search-append-payload", ) with_payload = append_payload if isinstance(query_vector, np.ndarray): query_vector = query_vector.tolist() if self._prefer_grpc: vector_name = None sparse_indices = None if isinstance(query_vector, types.NamedVector): vector = query_vector.vector vector_name = query_vector.name elif isinstance(query_vector, types.NamedSparseVector): vector_name = query_vector.name sparse_indices = grpc.SparseIndices(data=query_vector.vector.indices) vector = query_vector.vector.values elif isinstance(query_vector, tuple): vector_name = query_vector[0] vector = query_vector[1] else: vector = list(query_vector) if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.SearchResponse = await self.grpc_points.Search( grpc.SearchPoints( collection_name=collection_name, vector=vector, vector_name=vector_name, filter=query_filter, limit=limit, offset=offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, read_consistency=consistency, timeout=timeout, sparse_indices=sparse_indices, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) return [GrpcToRest.convert_scored_point(hit) for hit in res.result] else: if isinstance(query_vector, tuple): query_vector = types.NamedVector(name=query_vector[0], vector=query_vector[1]) if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) search_result = await self.http.search_api.search_points( collection_name=collection_name, consistency=consistency, timeout=timeout, search_request=models.SearchRequest( vector=query_vector, filter=query_filter, limit=limit, offset=offset, params=search_params, with_vector=with_vectors, with_payload=with_payload, score_threshold=score_threshold, shard_key=shard_key_selector, ), ) result: Optional[list[types.ScoredPoint]] = search_result.result assert result is not None, "Search returned None" return result
[docs] async def query_points( self, collection_name: str, query: Union[ types.PointId, list[float], list[list[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, types.Image, types.InferenceObject, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.QueryResponse: if self._prefer_grpc: if query is not None: query = RestToGrpc.convert_query(query) if isinstance(prefetch, models.Prefetch): prefetch = [RestToGrpc.convert_prefetch_query(prefetch)] if isinstance(prefetch, list): prefetch = [ RestToGrpc.convert_prefetch_query(p) if isinstance(p, models.Prefetch) else p for p in prefetch ] if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.QueryResponse = await self.grpc_points.Query( grpc.QueryPoints( collection_name=collection_name, query=query, prefetch=prefetch, filter=query_filter, limit=limit, offset=offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, using=using, lookup_from=lookup_from, timeout=timeout, shard_key_selector=shard_key_selector, read_consistency=consistency, ), timeout=timeout if timeout is not None else self._timeout, ) scored_points = [GrpcToRest.convert_scored_point(hit) for hit in res.result] return models.QueryResponse(points=scored_points) else: if isinstance(query, grpc.Query): query = GrpcToRest.convert_query(query) if isinstance(prefetch, grpc.PrefetchQuery): prefetch = GrpcToRest.convert_prefetch_query(prefetch) if isinstance(prefetch, list): prefetch = [ GrpcToRest.convert_prefetch_query(p) if isinstance(p, grpc.PrefetchQuery) else p for p in prefetch ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) query_request = models.QueryRequest( shard_key=shard_key_selector, prefetch=prefetch, query=query, using=using, filter=query_filter, params=search_params, score_threshold=score_threshold, limit=limit, offset=offset, with_vector=with_vectors, with_payload=with_payload, lookup_from=lookup_from, ) query_result = await self.http.search_api.query_points( collection_name=collection_name, consistency=consistency, timeout=timeout, query_request=query_request, ) result: Optional[models.QueryResponse] = query_result.result assert result is not None, "Search returned None" return result
[docs] async def query_batch_points( self, collection_name: str, requests: Sequence[types.QueryRequest], consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.QueryResponse]: if self._prefer_grpc: requests = [ RestToGrpc.convert_query_request(r, collection_name) if isinstance(r, models.QueryRequest) else r for r in requests ] if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) grpc_res: grpc.QueryBatchResponse = await self.grpc_points.QueryBatch( grpc.QueryBatchPoints( collection_name=collection_name, query_points=requests, read_consistency=consistency, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [ models.QueryResponse( points=[GrpcToRest.convert_scored_point(hit) for hit in r.result] ) for r in grpc_res.result ] else: requests = [ GrpcToRest.convert_query_points(r) if isinstance(r, grpc.QueryPoints) else r for r in requests ] http_res: Optional[list[models.QueryResponse]] = ( await self.http.search_api.query_batch_points( collection_name=collection_name, consistency=consistency, timeout=timeout, query_request_batch=models.QueryRequestBatch(searches=requests), ) ).result assert http_res is not None, "Query batch returned None" return http_res
[docs] async def query_points_groups( self, collection_name: str, group_by: str, query: Union[ types.PointId, list[float], list[list[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, types.Image, types.InferenceObject, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, group_size: int = 3, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.GroupsResult: if self._prefer_grpc: if query is not None: query = RestToGrpc.convert_query(query) if isinstance(prefetch, models.Prefetch): prefetch = [RestToGrpc.convert_prefetch_query(prefetch)] if isinstance(prefetch, list): prefetch = [ RestToGrpc.convert_prefetch_query(p) if isinstance(p, models.Prefetch) else p for p in prefetch ] if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(with_lookup, models.WithLookup): with_lookup = RestToGrpc.convert_with_lookup(with_lookup) if isinstance(with_lookup, str): with_lookup = grpc.WithLookup(collection=with_lookup) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) result: grpc.QueryGroupsResponse = ( await self.grpc_points.QueryGroups( grpc.QueryPointGroups( collection_name=collection_name, query=query, prefetch=prefetch, filter=query_filter, limit=limit, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, using=using, group_by=group_by, group_size=group_size, with_lookup=with_lookup, lookup_from=lookup_from, timeout=timeout, shard_key_selector=shard_key_selector, read_consistency=consistency, ), timeout=timeout if timeout is not None else self._timeout, ) ).result return GrpcToRest.convert_groups_result(result) else: if isinstance(query, grpc.Query): query = GrpcToRest.convert_query(query) if isinstance(prefetch, grpc.PrefetchQuery): prefetch = GrpcToRest.convert_prefetch_query(prefetch) if isinstance(prefetch, list): prefetch = [ GrpcToRest.convert_prefetch_query(p) if isinstance(p, grpc.PrefetchQuery) else p for p in prefetch ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(with_lookup, grpc.WithLookup): with_lookup = GrpcToRest.convert_with_lookup(with_lookup) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) query_request = models.QueryGroupsRequest( shard_key=shard_key_selector, prefetch=prefetch, query=query, using=using, filter=query_filter, params=search_params, score_threshold=score_threshold, limit=limit, group_by=group_by, group_size=group_size, with_vector=with_vectors, with_payload=with_payload, with_lookup=with_lookup, lookup_from=lookup_from, ) query_result = await self.http.search_api.query_points_groups( collection_name=collection_name, consistency=consistency, timeout=timeout, query_groups_request=query_request, ) assert query_result is not None, "Query points groups API returned None" return query_result.result
[docs] async def search_groups( self, collection_name: str, query_vector: Union[ Sequence[float], tuple[str, list[float]], types.NamedVector, types.NamedSparseVector, types.NumpyArray, ], group_by: str, query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, group_size: int = 1, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.GroupsResult: if self._prefer_grpc: vector_name = None sparse_indices = None if isinstance(with_lookup, models.WithLookup): with_lookup = RestToGrpc.convert_with_lookup(with_lookup) if isinstance(with_lookup, str): with_lookup = grpc.WithLookup(collection=with_lookup) if isinstance(query_vector, types.NamedVector): vector = query_vector.vector vector_name = query_vector.name elif isinstance(query_vector, types.NamedSparseVector): vector_name = query_vector.name sparse_indices = grpc.SparseIndices(data=query_vector.vector.indices) vector = query_vector.vector.values elif isinstance(query_vector, tuple): vector_name = query_vector[0] vector = query_vector[1] else: vector = list(query_vector) if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) result: grpc.GroupsResult = ( await self.grpc_points.SearchGroups( grpc.SearchPointGroups( collection_name=collection_name, vector=vector, vector_name=vector_name, filter=query_filter, limit=limit, group_size=group_size, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, group_by=group_by, read_consistency=consistency, with_lookup=with_lookup, timeout=timeout, sparse_indices=sparse_indices, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) ).result return GrpcToRest.convert_groups_result(result) else: if isinstance(with_lookup, grpc.WithLookup): with_lookup = GrpcToRest.convert_with_lookup(with_lookup) if isinstance(query_vector, tuple): query_vector = construct( models.NamedVector, name=query_vector[0], vector=query_vector[1] ) if isinstance(query_vector, np.ndarray): query_vector = query_vector.tolist() if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) search_groups_request = construct( models.SearchGroupsRequest, vector=query_vector, filter=query_filter, params=search_params, with_payload=with_payload, with_vector=with_vectors, score_threshold=score_threshold, group_by=group_by, group_size=group_size, limit=limit, with_lookup=with_lookup, shard_key=shard_key_selector, ) return ( await self.openapi_client.search_api.search_point_groups( search_groups_request=search_groups_request, collection_name=collection_name, consistency=consistency, timeout=timeout, ) ).result
[docs] async def search_matrix_pairs( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.SearchMatrixPairsResponse: if self._prefer_grpc: if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) response = await self.grpc_points.SearchMatrixPairs( grpc.SearchMatrixPoints( collection_name=collection_name, filter=query_filter, sample=sample, limit=limit, using=using, timeout=timeout, read_consistency=consistency, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) return GrpcToRest.convert_search_matrix_pairs(response.result) if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) search_matrix_result = ( await self.openapi_client.search_api.search_matrix_pairs( collection_name=collection_name, consistency=consistency, timeout=timeout, search_matrix_request=models.SearchMatrixRequest( shard_key=shard_key_selector, limit=limit, sample=sample, using=using, filter=query_filter, ), ) ).result assert search_matrix_result is not None, "Search matrix pairs returned None result" return search_matrix_result
[docs] async def search_matrix_offsets( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.SearchMatrixOffsetsResponse: if self._prefer_grpc: if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) response = await self.grpc_points.SearchMatrixOffsets( grpc.SearchMatrixPoints( collection_name=collection_name, filter=query_filter, sample=sample, limit=limit, using=using, timeout=timeout, read_consistency=consistency, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) return GrpcToRest.convert_search_matrix_offsets(response.result) if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) search_matrix_result = ( await self.openapi_client.search_api.search_matrix_offsets( collection_name=collection_name, consistency=consistency, timeout=timeout, search_matrix_request=models.SearchMatrixRequest( shard_key=shard_key_selector, limit=limit, sample=sample, using=using, filter=query_filter, ), ) ).result assert search_matrix_result is not None, "Search matrix offsets returned None result" return search_matrix_result
[docs] async def recommend_batch( self, collection_name: str, requests: Sequence[types.RecommendRequest], consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[list[types.ScoredPoint]]: if self._prefer_grpc: requests = [ RestToGrpc.convert_recommend_request(r, collection_name) if isinstance(r, models.RecommendRequest) else r for r in requests ] if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) grpc_res: grpc.SearchBatchResponse = await self.grpc_points.RecommendBatch( grpc.RecommendBatchPoints( collection_name=collection_name, recommend_points=requests, read_consistency=consistency, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [ [GrpcToRest.convert_scored_point(hit) for hit in r.result] for r in grpc_res.result ] else: requests = [ GrpcToRest.convert_recommend_points(r) if isinstance(r, grpc.RecommendPoints) else r for r in requests ] http_res: list[list[models.ScoredPoint]] = ( await self.http.search_api.recommend_batch_points( collection_name=collection_name, consistency=consistency, timeout=timeout, recommend_request_batch=models.RecommendRequestBatch(searches=requests), ) ).result return http_res
[docs] async def recommend( self, collection_name: str, positive: Optional[Sequence[types.RecommendExample]] = None, negative: Optional[Sequence[types.RecommendExample]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], types.PayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, strategy: Optional[types.RecommendStrategy] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: if positive is None: positive = [] if negative is None: negative = [] if self._prefer_grpc: positive_ids = RestToGrpc.convert_recommend_examples_to_ids(positive) positive_vectors = RestToGrpc.convert_recommend_examples_to_vectors(positive) negative_ids = RestToGrpc.convert_recommend_examples_to_ids(negative) negative_vectors = RestToGrpc.convert_recommend_examples_to_vectors(negative) if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(strategy, (str, models.RecommendStrategy)): strategy = RestToGrpc.convert_recommend_strategy(strategy) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.SearchResponse = await self.grpc_points.Recommend( grpc.RecommendPoints( collection_name=collection_name, positive=positive_ids, negative=negative_ids, filter=query_filter, limit=limit, offset=offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, using=using, lookup_from=lookup_from, read_consistency=consistency, strategy=strategy, positive_vectors=positive_vectors, negative_vectors=negative_vectors, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [GrpcToRest.convert_scored_point(hit) for hit in res.result] else: positive = [ GrpcToRest.convert_point_id(example) if isinstance(example, grpc.PointId) else example for example in positive ] negative = [ GrpcToRest.convert_point_id(example) if isinstance(example, grpc.PointId) else example for example in negative ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) result = ( await self.openapi_client.search_api.recommend_points( collection_name=collection_name, consistency=consistency, timeout=timeout, recommend_request=models.RecommendRequest( filter=query_filter, positive=positive, negative=negative, params=search_params, limit=limit, offset=offset, with_payload=with_payload, with_vector=with_vectors, score_threshold=score_threshold, lookup_from=lookup_from, using=using, strategy=strategy, shard_key=shard_key_selector, ), ) ).result assert result is not None, "Recommend points API returned None" return result
[docs] async def recommend_groups( self, collection_name: str, group_by: str, positive: Optional[Sequence[Union[types.PointId, list[float]]]] = None, negative: Optional[Sequence[Union[types.PointId, list[float]]]] = None, query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, group_size: int = 1, score_threshold: Optional[float] = None, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, using: Optional[str] = None, lookup_from: Optional[models.LookupLocation] = None, with_lookup: Optional[types.WithLookupInterface] = None, strategy: Optional[types.RecommendStrategy] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.GroupsResult: positive = positive if positive is not None else [] negative = negative if negative is not None else [] if self._prefer_grpc: if isinstance(with_lookup, models.WithLookup): with_lookup = RestToGrpc.convert_with_lookup(with_lookup) if isinstance(with_lookup, str): with_lookup = grpc.WithLookup(collection=with_lookup) positive_ids = RestToGrpc.convert_recommend_examples_to_ids(positive) positive_vectors = RestToGrpc.convert_recommend_examples_to_vectors(positive) negative_ids = RestToGrpc.convert_recommend_examples_to_ids(negative) negative_vectors = RestToGrpc.convert_recommend_examples_to_vectors(negative) if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(strategy, (str, models.RecommendStrategy)): strategy = RestToGrpc.convert_recommend_strategy(strategy) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.GroupsResult = ( await self.grpc_points.RecommendGroups( grpc.RecommendPointGroups( collection_name=collection_name, positive=positive_ids, negative=negative_ids, filter=query_filter, group_by=group_by, limit=limit, group_size=group_size, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, using=using, lookup_from=lookup_from, read_consistency=consistency, with_lookup=with_lookup, strategy=strategy, positive_vectors=positive_vectors, negative_vectors=negative_vectors, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) ).result assert res is not None, "Recommend groups API returned None" return GrpcToRest.convert_groups_result(res) else: if isinstance(with_lookup, grpc.WithLookup): with_lookup = GrpcToRest.convert_with_lookup(with_lookup) positive = [ GrpcToRest.convert_point_id(point_id) if isinstance(point_id, grpc.PointId) else point_id for point_id in positive ] negative = [ GrpcToRest.convert_point_id(point_id) if isinstance(point_id, grpc.PointId) else point_id for point_id in negative ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) result = ( await self.openapi_client.search_api.recommend_point_groups( collection_name=collection_name, consistency=consistency, timeout=timeout, recommend_groups_request=construct( models.RecommendGroupsRequest, positive=positive, negative=negative, filter=query_filter, group_by=group_by, limit=limit, group_size=group_size, params=search_params, with_payload=with_payload, with_vector=with_vectors, score_threshold=score_threshold, lookup_from=lookup_from, using=using, with_lookup=with_lookup, strategy=strategy, shard_key=shard_key_selector, ), ) ).result assert result is not None, "Recommend points API returned None" return result
[docs] async def discover( self, collection_name: str, target: Optional[types.TargetVector] = None, context: Optional[Sequence[types.ContextExamplePair]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], types.PayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: if context is None: context = [] if self._prefer_grpc: target = ( RestToGrpc.convert_target_vector(target) if target is not None and isinstance(target, get_args_subscribed(models.RecommendExample)) else target ) context = [ RestToGrpc.convert_context_example_pair(pair) if isinstance(pair, models.ContextExamplePair) else pair for pair in context ] if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.SearchResponse = await self.grpc_points.Discover( grpc.DiscoverPoints( collection_name=collection_name, target=target, context=context, filter=query_filter, limit=limit, offset=offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, using=using, lookup_from=lookup_from, read_consistency=consistency, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [GrpcToRest.convert_scored_point(hit) for hit in res.result] else: target = ( GrpcToRest.convert_target_vector(target) if target is not None and isinstance(target, grpc.TargetVector) else target ) context = [ GrpcToRest.convert_context_example_pair(pair) if isinstance(pair, grpc.ContextExamplePair) else pair for pair in context ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) result = ( await self.openapi_client.search_api.discover_points( collection_name=collection_name, consistency=consistency, timeout=timeout, discover_request=models.DiscoverRequest( target=target, context=context, filter=query_filter, params=search_params, limit=limit, offset=offset, with_payload=with_payload, with_vector=with_vectors, lookup_from=lookup_from, using=using, shard_key=shard_key_selector, ), ) ).result assert result is not None, "Discover points API returned None" return result
[docs] async def discover_batch( self, collection_name: str, requests: Sequence[types.DiscoverRequest], consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[list[types.ScoredPoint]]: if self._prefer_grpc: requests = [ RestToGrpc.convert_discover_request(r, collection_name) if isinstance(r, models.DiscoverRequest) else r for r in requests ] grpc_res: grpc.SearchBatchResponse = await self.grpc_points.DiscoverBatch( grpc.DiscoverBatchPoints( collection_name=collection_name, discover_points=requests, read_consistency=consistency, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [ [GrpcToRest.convert_scored_point(hit) for hit in r.result] for r in grpc_res.result ] else: requests = [ GrpcToRest.convert_discover_points(r) if isinstance(r, grpc.DiscoverPoints) else r for r in requests ] http_res: list[list[models.ScoredPoint]] = ( await self.http.search_api.discover_batch_points( collection_name=collection_name, discover_request_batch=models.DiscoverRequestBatch(searches=requests), consistency=consistency, timeout=timeout, ) ).result return http_res
[docs] async def scroll( self, collection_name: str, scroll_filter: Optional[types.Filter] = None, limit: int = 10, order_by: Optional[types.OrderBy] = None, offset: Optional[types.PointId] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> tuple[list[types.Record], Optional[types.PointId]]: if self._prefer_grpc: if isinstance(offset, get_args_subscribed(models.ExtendedPointId)): offset = RestToGrpc.convert_extended_point_id(offset) if isinstance(scroll_filter, models.Filter): scroll_filter = RestToGrpc.convert_filter(model=scroll_filter) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) if isinstance(order_by, get_args_subscribed(models.OrderByInterface)): order_by = RestToGrpc.convert_order_by_interface(order_by) res: grpc.ScrollResponse = await self.grpc_points.Scroll( grpc.ScrollPoints( collection_name=collection_name, filter=scroll_filter, order_by=order_by, offset=offset, with_vectors=with_vectors, with_payload=with_payload, limit=limit, read_consistency=consistency, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return ( [GrpcToRest.convert_retrieved_point(point) for point in res.result], GrpcToRest.convert_point_id(res.next_page_offset) if res.HasField("next_page_offset") else None, ) else: if isinstance(offset, grpc.PointId): offset = GrpcToRest.convert_point_id(offset) if isinstance(scroll_filter, grpc.Filter): scroll_filter = GrpcToRest.convert_filter(model=scroll_filter) if isinstance(order_by, grpc.OrderBy): order_by = GrpcToRest.convert_order_by(order_by) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) scroll_result: Optional[models.ScrollResult] = ( await self.openapi_client.points_api.scroll_points( collection_name=collection_name, consistency=consistency, scroll_request=models.ScrollRequest( filter=scroll_filter, limit=limit, order_by=order_by, offset=offset, with_payload=with_payload, with_vector=with_vectors, shard_key=shard_key_selector, ), timeout=timeout, ) ).result assert scroll_result is not None, "Scroll points API returned None result" return (scroll_result.points, scroll_result.next_page_offset)
[docs] async def count( self, collection_name: str, count_filter: Optional[types.Filter] = None, exact: bool = True, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.CountResult: if self._prefer_grpc: if isinstance(count_filter, models.Filter): count_filter = RestToGrpc.convert_filter(model=count_filter) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) response = ( await self.grpc_points.Count( grpc.CountPoints( collection_name=collection_name, filter=count_filter, exact=exact, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) ).result return GrpcToRest.convert_count_result(response) if isinstance(count_filter, grpc.Filter): count_filter = GrpcToRest.convert_filter(model=count_filter) count_result = ( await self.openapi_client.points_api.count_points( collection_name=collection_name, count_request=models.CountRequest( filter=count_filter, exact=exact, shard_key=shard_key_selector ), timeout=timeout, ) ).result assert count_result is not None, "Count points returned None result" return count_result
[docs] async def facet( self, collection_name: str, key: str, facet_filter: Optional[types.Filter] = None, limit: int = 10, exact: bool = False, timeout: Optional[int] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.FacetResponse: if self._prefer_grpc: if isinstance(facet_filter, models.Filter): facet_filter = RestToGrpc.convert_filter(model=facet_filter) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) response = await self.grpc_points.Facet( grpc.FacetCounts( collection_name=collection_name, key=key, filter=facet_filter, limit=limit, exact=exact, timeout=timeout, read_consistency=consistency, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) return types.FacetResponse( hits=[GrpcToRest.convert_facet_value_hit(hit) for hit in response.hits] ) if isinstance(facet_filter, grpc.Filter): facet_filter = GrpcToRest.convert_filter(model=facet_filter) facet_result = ( await self.openapi_client.points_api.facet( collection_name=collection_name, consistency=consistency, timeout=timeout, facet_request=models.FacetRequest( shard_key=shard_key_selector, key=key, limit=limit, filter=facet_filter, exact=exact, ), ) ).result assert facet_result is not None, "Facet points returned None result" return facet_result
[docs] async def upsert( self, collection_name: str, points: types.Points, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: if isinstance(points, models.Batch): vectors_batch: list[grpc.Vectors] = RestToGrpc.convert_batch_vector_struct( points.vectors, len(points.ids) ) points = [ grpc.PointStruct( id=RestToGrpc.convert_extended_point_id(points.ids[idx]), vectors=vectors_batch[idx], payload=RestToGrpc.convert_payload(points.payloads[idx]) if points.payloads is not None else None, ) for idx in range(len(points.ids)) ] if isinstance(points, list): points = [ RestToGrpc.convert_point_struct(point) if isinstance(point, models.PointStruct) else point for point in points ] if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) grpc_result = ( await self.grpc_points.Upsert( grpc.UpsertPoints( collection_name=collection_name, wait=wait, points=points, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ) ).result assert grpc_result is not None, "Upsert returned None result" return GrpcToRest.convert_update_result(grpc_result) else: if isinstance(points, list): points = [ GrpcToRest.convert_point_struct(point) if isinstance(point, grpc.PointStruct) else point for point in points ] points = models.PointsList(points=points, shard_key=shard_key_selector) if isinstance(points, models.Batch): points = models.PointsBatch(batch=points, shard_key=shard_key_selector) http_result = ( await self.openapi_client.points_api.upsert_points( collection_name=collection_name, wait=wait, point_insert_operations=points, ordering=ordering, ) ).result assert http_result is not None, "Upsert returned None result" return http_result
[docs] async def update_vectors( self, collection_name: str, points: Sequence[types.PointVectors], wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: points = [RestToGrpc.convert_point_vectors(point) for point in points] if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) grpc_result = ( await self.grpc_points.UpdateVectors( grpc.UpdatePointVectors( collection_name=collection_name, wait=wait, points=points, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ) ).result assert grpc_result is not None, "Upsert returned None result" return GrpcToRest.convert_update_result(grpc_result) else: return ( await self.openapi_client.points_api.update_vectors( collection_name=collection_name, wait=wait, update_vectors=models.UpdateVectors( points=points, shard_key=shard_key_selector ), ordering=ordering, ) ).result
[docs] async def delete_vectors( self, collection_name: str, vectors: Sequence[str], points: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: (points_selector, opt_shard_key_selector) = self._try_argument_to_grpc_selector(points) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) grpc_result = ( await self.grpc_points.DeleteVectors( grpc.DeletePointVectors( collection_name=collection_name, wait=wait, vectors=grpc.VectorsSelector(names=vectors), points_selector=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ) ).result assert grpc_result is not None, "Delete vectors returned None result" return GrpcToRest.convert_update_result(grpc_result) else: (_points, _filter) = self._try_argument_to_rest_points_and_filter(points) return ( await self.openapi_client.points_api.delete_vectors( collection_name=collection_name, wait=wait, ordering=ordering, delete_vectors=construct( models.DeleteVectors, vector=vectors, points=_points, filter=_filter, shard_key=shard_key_selector, ), ) ).result
[docs] async def retrieve( self, collection_name: str, ids: Sequence[types.PointId], with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.Record]: if self._prefer_grpc: if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) ids = [ RestToGrpc.convert_extended_point_id(idx) if isinstance(idx, get_args_subscribed(models.ExtendedPointId)) else idx for idx in ids ] with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) result = ( await self.grpc_points.Get( grpc.GetPoints( collection_name=collection_name, ids=ids, with_payload=with_payload, with_vectors=with_vectors, read_consistency=consistency, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) ).result assert result is not None, "Retrieve returned None result" return [GrpcToRest.convert_retrieved_point(record) for record in result] else: if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) ids = [ GrpcToRest.convert_point_id(idx) if isinstance(idx, grpc.PointId) else idx for idx in ids ] http_result = ( await self.openapi_client.points_api.get_points( collection_name=collection_name, consistency=consistency, point_request=models.PointRequest( ids=ids, with_payload=with_payload, with_vector=with_vectors, shard_key=shard_key_selector, ), timeout=timeout, ) ).result assert http_result is not None, "Retrieve API returned None result" return http_result
@classmethod def _try_argument_to_grpc_selector( cls, points: types.PointsSelector ) -> tuple[grpc.PointsSelector, Optional[grpc.ShardKeySelector]]: shard_key_selector = None if isinstance(points, list): points_selector = grpc.PointsSelector( points=grpc.PointsIdsList( ids=[ RestToGrpc.convert_extended_point_id(idx) if isinstance(idx, get_args_subscribed(models.ExtendedPointId)) else idx for idx in points ] ) ) elif isinstance(points, grpc.PointsSelector): points_selector = points elif isinstance(points, get_args(models.PointsSelector)): if points.shard_key is not None: shard_key_selector = RestToGrpc.convert_shard_key_selector(points.shard_key) points_selector = RestToGrpc.convert_points_selector(points) elif isinstance(points, models.Filter): points_selector = RestToGrpc.convert_points_selector( construct(models.FilterSelector, filter=points) ) elif isinstance(points, grpc.Filter): points_selector = grpc.PointsSelector(filter=points) else: raise ValueError(f"Unsupported points selector type: {type(points)}") return (points_selector, shard_key_selector) @classmethod def _try_argument_to_rest_selector( cls, points: types.PointsSelector, shard_key_selector: Optional[types.ShardKeySelector] ) -> models.PointsSelector: if isinstance(points, list): _points = [ GrpcToRest.convert_point_id(idx) if isinstance(idx, grpc.PointId) else idx for idx in points ] points_selector = construct( models.PointIdsList, points=_points, shard_key=shard_key_selector ) elif isinstance(points, grpc.PointsSelector): points_selector = GrpcToRest.convert_points_selector(points) points_selector.shard_key = shard_key_selector elif isinstance(points, get_args(models.PointsSelector)): points_selector = points points_selector.shard_key = shard_key_selector elif isinstance(points, models.Filter): points_selector = construct( models.FilterSelector, filter=points, shard_key=shard_key_selector ) elif isinstance(points, grpc.Filter): points_selector = construct( models.FilterSelector, filter=GrpcToRest.convert_filter(points), shard_key=shard_key_selector, ) else: raise ValueError(f"Unsupported points selector type: {type(points)}") return points_selector @classmethod def _points_selector_to_points_list( cls, points_selector: grpc.PointsSelector ) -> list[grpc.PointId]: name = points_selector.WhichOneof("points_selector_one_of") if name is None: return [] val = getattr(points_selector, name) if name == "points": return list(val.ids) return [] @classmethod def _try_argument_to_rest_points_and_filter( cls, points: types.PointsSelector ) -> tuple[Optional[list[models.ExtendedPointId]], Optional[models.Filter]]: _points = None _filter = None if isinstance(points, list): _points = [ GrpcToRest.convert_point_id(idx) if isinstance(idx, grpc.PointId) else idx for idx in points ] elif isinstance(points, grpc.PointsSelector): selector = GrpcToRest.convert_points_selector(points) if isinstance(selector, models.PointIdsList): _points = selector.points elif isinstance(selector, models.FilterSelector): _filter = selector.filter elif isinstance(points, models.PointIdsList): _points = points.points elif isinstance(points, models.FilterSelector): _filter = points.filter elif isinstance(points, models.Filter): _filter = points elif isinstance(points, grpc.Filter): _filter = GrpcToRest.convert_filter(points) else: raise ValueError(f"Unsupported points selector type: {type(points)}") return (_points, _filter)
[docs] async def delete( self, collection_name: str, points_selector: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: (points_selector, opt_shard_key_selector) = self._try_argument_to_grpc_selector( points_selector ) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( ( await self.grpc_points.Delete( grpc.DeletePoints( collection_name=collection_name, wait=wait, points=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ) ).result ) else: points_selector = self._try_argument_to_rest_selector( points_selector, shard_key_selector ) result: Optional[types.UpdateResult] = ( await self.openapi_client.points_api.delete_points( collection_name=collection_name, wait=wait, points_selector=points_selector, ordering=ordering, ) ).result assert result is not None, "Delete points returned None" return result
[docs] async def set_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, key: Optional[str] = None, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: (points_selector, opt_shard_key_selector) = self._try_argument_to_grpc_selector(points) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( ( await self.grpc_points.SetPayload( grpc.SetPayloadPoints( collection_name=collection_name, wait=wait, payload=RestToGrpc.convert_payload(payload), points_selector=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, key=key, ), timeout=self._timeout, ) ).result ) else: (_points, _filter) = self._try_argument_to_rest_points_and_filter(points) result: Optional[types.UpdateResult] = ( await self.openapi_client.points_api.set_payload( collection_name=collection_name, wait=wait, ordering=ordering, set_payload=models.SetPayload( payload=payload, points=_points, filter=_filter, shard_key=shard_key_selector, key=key, ), ) ).result assert result is not None, "Set payload returned None" return result
[docs] async def overwrite_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: (points_selector, opt_shard_key_selector) = self._try_argument_to_grpc_selector(points) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( ( await self.grpc_points.OverwritePayload( grpc.SetPayloadPoints( collection_name=collection_name, wait=wait, payload=RestToGrpc.convert_payload(payload), points_selector=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ) ).result ) else: (_points, _filter) = self._try_argument_to_rest_points_and_filter(points) result: Optional[types.UpdateResult] = ( await self.openapi_client.points_api.overwrite_payload( collection_name=collection_name, wait=wait, ordering=ordering, set_payload=models.SetPayload( payload=payload, points=_points, filter=_filter, shard_key=shard_key_selector, ), ) ).result assert result is not None, "Overwrite payload returned None" return result
[docs] async def delete_payload( self, collection_name: str, keys: Sequence[str], points: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: (points_selector, opt_shard_key_selector) = self._try_argument_to_grpc_selector(points) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( ( await self.grpc_points.DeletePayload( grpc.DeletePayloadPoints( collection_name=collection_name, wait=wait, keys=keys, points_selector=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ) ).result ) else: (_points, _filter) = self._try_argument_to_rest_points_and_filter(points) result: Optional[types.UpdateResult] = ( await self.openapi_client.points_api.delete_payload( collection_name=collection_name, wait=wait, ordering=ordering, delete_payload=models.DeletePayload( keys=keys, points=_points, filter=_filter, shard_key=shard_key_selector ), ) ).result assert result is not None, "Delete payload returned None" return result
[docs] async def clear_payload( self, collection_name: str, points_selector: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: (points_selector, opt_shard_key_selector) = self._try_argument_to_grpc_selector( points_selector ) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( ( await self.grpc_points.ClearPayload( grpc.ClearPayloadPoints( collection_name=collection_name, wait=wait, points=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ) ).result ) else: points_selector = self._try_argument_to_rest_selector( points_selector, shard_key_selector ) result: Optional[types.UpdateResult] = ( await self.openapi_client.points_api.clear_payload( collection_name=collection_name, wait=wait, ordering=ordering, points_selector=points_selector, ) ).result assert result is not None, "Clear payload returned None" return result
[docs] async def batch_update_points( self, collection_name: str, update_operations: Sequence[types.UpdateOperation], wait: bool = True, ordering: Optional[types.WriteOrdering] = None, **kwargs: Any, ) -> list[types.UpdateResult]: if self._prefer_grpc: update_operations = [ RestToGrpc.convert_update_operation(operation) for operation in update_operations ] if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) return [ GrpcToRest.convert_update_result(result) for result in ( await self.grpc_points.UpdateBatch( grpc.UpdateBatchPoints( collection_name=collection_name, wait=wait, operations=update_operations, ordering=ordering, ), timeout=self._timeout, ) ).result ] else: result: Optional[list[types.UpdateResult]] = ( await self.openapi_client.points_api.batch_update( collection_name=collection_name, wait=wait, ordering=ordering, update_operations=models.UpdateOperations(operations=update_operations), ) ).result assert result is not None, "Batch update points returned None" return result
[docs] async def update_collection_aliases( self, change_aliases_operations: Sequence[types.AliasOperations], timeout: Optional[int] = None, **kwargs: Any, ) -> bool: if self._prefer_grpc: change_aliases_operation = [ RestToGrpc.convert_alias_operations(operation) if not isinstance(operation, grpc.AliasOperations) else operation for operation in change_aliases_operations ] return ( await self.grpc_collections.UpdateAliases( grpc.ChangeAliases(timeout=timeout, actions=change_aliases_operation), timeout=timeout if timeout is not None else self._timeout, ) ).result change_aliases_operation = [ GrpcToRest.convert_alias_operations(operation) if isinstance(operation, grpc.AliasOperations) else operation for operation in change_aliases_operations ] result: Optional[bool] = ( await self.http.aliases_api.update_aliases( timeout=timeout, change_aliases_operation=models.ChangeAliasesOperation( actions=change_aliases_operation ), ) ).result assert result is not None, "Update aliases returned None" return result
[docs] async def get_collection_aliases( self, collection_name: str, **kwargs: Any ) -> types.CollectionsAliasesResponse: if self._prefer_grpc: response = ( await self.grpc_collections.ListCollectionAliases( grpc.ListCollectionAliasesRequest(collection_name=collection_name), timeout=self._timeout, ) ).aliases return types.CollectionsAliasesResponse( aliases=[ GrpcToRest.convert_alias_description(description) for description in response ] ) result: Optional[types.CollectionsAliasesResponse] = ( await self.http.aliases_api.get_collection_aliases(collection_name=collection_name) ).result assert result is not None, "Get collection aliases returned None" return result
[docs] async def get_aliases(self, **kwargs: Any) -> types.CollectionsAliasesResponse: if self._prefer_grpc: response = ( await self.grpc_collections.ListAliases( grpc.ListAliasesRequest(), timeout=self._timeout ) ).aliases return types.CollectionsAliasesResponse( aliases=[ GrpcToRest.convert_alias_description(description) for description in response ] ) result: Optional[types.CollectionsAliasesResponse] = ( await self.http.aliases_api.get_collections_aliases() ).result assert result is not None, "Get aliases returned None" return result
[docs] async def get_collections(self, **kwargs: Any) -> types.CollectionsResponse: if self._prefer_grpc: response = ( await self.grpc_collections.List( grpc.ListCollectionsRequest(), timeout=self._timeout ) ).collections return types.CollectionsResponse( collections=[ GrpcToRest.convert_collection_description(description) for description in response ] ) result: Optional[types.CollectionsResponse] = ( await self.http.collections_api.get_collections() ).result assert result is not None, "Get collections returned None" return result
[docs] async def get_collection(self, collection_name: str, **kwargs: Any) -> types.CollectionInfo: if self._prefer_grpc: return GrpcToRest.convert_collection_info( ( await self.grpc_collections.Get( grpc.GetCollectionInfoRequest(collection_name=collection_name), timeout=self._timeout, ) ).result ) result: Optional[types.CollectionInfo] = ( await self.http.collections_api.get_collection(collection_name=collection_name) ).result assert result is not None, "Get collection returned None" return result
[docs] async def collection_exists(self, collection_name: str, **kwargs: Any) -> bool: if self._prefer_grpc: return ( await self.grpc_collections.CollectionExists( grpc.CollectionExistsRequest(collection_name=collection_name), timeout=self._timeout, ) ).result.exists result: Optional[models.CollectionExistence] = ( await self.http.collections_api.collection_exists(collection_name=collection_name) ).result assert result is not None, "Collection exists returned None" return result.exists
[docs] async def update_collection( self, collection_name: str, optimizers_config: Optional[types.OptimizersConfigDiff] = None, collection_params: Optional[types.CollectionParamsDiff] = None, vectors_config: Optional[types.VectorsConfigDiff] = None, hnsw_config: Optional[types.HnswConfigDiff] = None, quantization_config: Optional[types.QuantizationConfigDiff] = None, timeout: Optional[int] = None, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, strict_mode_config: Optional[types.StrictModeConfig] = None, **kwargs: Any, ) -> bool: if self._prefer_grpc: if isinstance(optimizers_config, models.OptimizersConfigDiff): optimizers_config = RestToGrpc.convert_optimizers_config_diff(optimizers_config) if isinstance(collection_params, models.CollectionParamsDiff): collection_params = RestToGrpc.convert_collection_params_diff(collection_params) if isinstance(vectors_config, dict): vectors_config = RestToGrpc.convert_vectors_config_diff(vectors_config) if isinstance(hnsw_config, models.HnswConfigDiff): hnsw_config = RestToGrpc.convert_hnsw_config_diff(hnsw_config) if isinstance(quantization_config, get_args(models.QuantizationConfigDiff)): quantization_config = RestToGrpc.convert_quantization_config_diff( quantization_config ) if isinstance(sparse_vectors_config, dict): sparse_vectors_config = RestToGrpc.convert_sparse_vector_config( sparse_vectors_config ) if isinstance(strict_mode_config, models.StrictModeConfig): strict_mode_config = RestToGrpc.convert_strict_mode_config(strict_mode_config) return ( await self.grpc_collections.Update( grpc.UpdateCollection( collection_name=collection_name, optimizers_config=optimizers_config, params=collection_params, vectors_config=vectors_config, hnsw_config=hnsw_config, quantization_config=quantization_config, sparse_vectors_config=sparse_vectors_config, strict_mode_config=strict_mode_config, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) ).result if isinstance(optimizers_config, grpc.OptimizersConfigDiff): optimizers_config = GrpcToRest.convert_optimizers_config_diff(optimizers_config) if isinstance(collection_params, grpc.CollectionParamsDiff): collection_params = GrpcToRest.convert_collection_params_diff(collection_params) if isinstance(vectors_config, grpc.VectorsConfigDiff): vectors_config = GrpcToRest.convert_vectors_config_diff(vectors_config) if isinstance(hnsw_config, grpc.HnswConfigDiff): hnsw_config = GrpcToRest.convert_hnsw_config_diff(hnsw_config) if isinstance(quantization_config, grpc.QuantizationConfigDiff): quantization_config = GrpcToRest.convert_quantization_config_diff(quantization_config) result: Optional[bool] = ( await self.http.collections_api.update_collection( collection_name, update_collection=models.UpdateCollection( optimizers_config=optimizers_config, params=collection_params, vectors=vectors_config, hnsw_config=hnsw_config, quantization_config=quantization_config, sparse_vectors=sparse_vectors_config, strict_mode_config=strict_mode_config, ), timeout=timeout, ) ).result assert result is not None, "Update collection returned None" return result
[docs] async def delete_collection( self, collection_name: str, timeout: Optional[int] = None, **kwargs: Any ) -> bool: if self._prefer_grpc: return ( await self.grpc_collections.Delete( grpc.DeleteCollection(collection_name=collection_name, timeout=timeout), timeout=timeout if timeout is not None else self._timeout, ) ).result result: Optional[bool] = ( await self.http.collections_api.delete_collection(collection_name, timeout=timeout) ).result assert result is not None, "Delete collection returned None" return result
[docs] async def create_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], shard_number: Optional[int] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[types.HnswConfigDiff] = None, optimizers_config: Optional[types.OptimizersConfigDiff] = None, wal_config: Optional[types.WalConfigDiff] = None, quantization_config: Optional[types.QuantizationConfig] = None, init_from: Optional[types.InitFrom] = None, timeout: Optional[int] = None, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, sharding_method: Optional[types.ShardingMethod] = None, strict_mode_config: Optional[types.StrictModeConfig] = None, **kwargs: Any, ) -> bool: if init_from is not None: show_warning_once( message="init_from is deprecated", category=DeprecationWarning, stacklevel=5, idx="create-collection-init-from", ) if self._prefer_grpc: if isinstance(vectors_config, (models.VectorParams, dict)): vectors_config = RestToGrpc.convert_vectors_config(vectors_config) if isinstance(hnsw_config, models.HnswConfigDiff): hnsw_config = RestToGrpc.convert_hnsw_config_diff(hnsw_config) if isinstance(optimizers_config, models.OptimizersConfigDiff): optimizers_config = RestToGrpc.convert_optimizers_config_diff(optimizers_config) if isinstance(wal_config, models.WalConfigDiff): wal_config = RestToGrpc.convert_wal_config_diff(wal_config) if isinstance(quantization_config, get_args(models.QuantizationConfig)): quantization_config = RestToGrpc.convert_quantization_config(quantization_config) if isinstance(init_from, models.InitFrom): init_from = RestToGrpc.convert_init_from(init_from) if isinstance(sparse_vectors_config, dict): sparse_vectors_config = RestToGrpc.convert_sparse_vector_config( sparse_vectors_config ) if isinstance(sharding_method, models.ShardingMethod): sharding_method = RestToGrpc.convert_sharding_method(sharding_method) if isinstance(strict_mode_config, models.StrictModeConfig): strict_mode_config = RestToGrpc.convert_strict_mode_config(strict_mode_config) create_collection = grpc.CreateCollection( collection_name=collection_name, hnsw_config=hnsw_config, wal_config=wal_config, optimizers_config=optimizers_config, shard_number=shard_number, on_disk_payload=on_disk_payload, timeout=timeout, vectors_config=vectors_config, replication_factor=replication_factor, write_consistency_factor=write_consistency_factor, init_from_collection=init_from, quantization_config=quantization_config, sparse_vectors_config=sparse_vectors_config, sharding_method=sharding_method, strict_mode_config=strict_mode_config, ) return ( await self.grpc_collections.Create(create_collection, timeout=self._timeout) ).result if isinstance(hnsw_config, grpc.HnswConfigDiff): hnsw_config = GrpcToRest.convert_hnsw_config_diff(hnsw_config) if isinstance(optimizers_config, grpc.OptimizersConfigDiff): optimizers_config = GrpcToRest.convert_optimizers_config_diff(optimizers_config) if isinstance(wal_config, grpc.WalConfigDiff): wal_config = GrpcToRest.convert_wal_config_diff(wal_config) if isinstance(quantization_config, grpc.QuantizationConfig): quantization_config = GrpcToRest.convert_quantization_config(quantization_config) if isinstance(init_from, str): init_from = GrpcToRest.convert_init_from(init_from) create_collection_request = models.CreateCollection( vectors=vectors_config, shard_number=shard_number, replication_factor=replication_factor, write_consistency_factor=write_consistency_factor, on_disk_payload=on_disk_payload, hnsw_config=hnsw_config, optimizers_config=optimizers_config, wal_config=wal_config, quantization_config=quantization_config, init_from=init_from, sparse_vectors=sparse_vectors_config, sharding_method=sharding_method, strict_mode_config=strict_mode_config, ) result: Optional[bool] = ( await self.http.collections_api.create_collection( collection_name=collection_name, create_collection=create_collection_request, timeout=timeout, ) ).result assert result is not None, "Create collection returned None" return result
[docs] async def recreate_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], shard_number: Optional[int] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[types.HnswConfigDiff] = None, optimizers_config: Optional[types.OptimizersConfigDiff] = None, wal_config: Optional[types.WalConfigDiff] = None, quantization_config: Optional[types.QuantizationConfig] = None, init_from: Optional[types.InitFrom] = None, timeout: Optional[int] = None, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, sharding_method: Optional[types.ShardingMethod] = None, strict_mode_config: Optional[types.StrictModeConfig] = None, **kwargs: Any, ) -> bool: await self.delete_collection(collection_name, timeout=timeout) return await self.create_collection( collection_name=collection_name, vectors_config=vectors_config, shard_number=shard_number, replication_factor=replication_factor, write_consistency_factor=write_consistency_factor, on_disk_payload=on_disk_payload, hnsw_config=hnsw_config, optimizers_config=optimizers_config, wal_config=wal_config, quantization_config=quantization_config, init_from=init_from, timeout=timeout, sparse_vectors_config=sparse_vectors_config, sharding_method=sharding_method, strict_mode_config=strict_mode_config, )
@property def _updater_class(self) -> Type[BaseUploader]: if self._prefer_grpc: return GrpcBatchUploader else: return RestBatchUploader def _upload_collection( self, batches_iterator: Iterable, collection_name: str, max_retries: int, parallel: int = 1, method: Optional[str] = None, wait: bool = False, shard_key_selector: Optional[types.ShardKeySelector] = None, ) -> None: if method is not None: if method in get_all_start_methods(): start_method = method else: raise ValueError( f"Start methods {method} is not available, available methods: {get_all_start_methods()}" ) else: start_method = "forkserver" if "forkserver" in get_all_start_methods() else "spawn" if self._prefer_grpc: updater_kwargs = { "collection_name": collection_name, "host": self._host, "port": self._grpc_port, "max_retries": max_retries, "ssl": self._https, "metadata": self._grpc_headers, "wait": wait, "shard_key_selector": shard_key_selector, "options": self._grpc_options, "timeout": self._timeout, } else: updater_kwargs = { "collection_name": collection_name, "uri": self.rest_uri, "max_retries": max_retries, "wait": wait, "shard_key_selector": shard_key_selector, **self._rest_args, } if parallel == 1: updater = self._updater_class.start(**updater_kwargs) for _ in updater.process(batches_iterator): pass else: pool = ParallelWorkerPool(parallel, self._updater_class, start_method=start_method) for _ in pool.unordered_map(batches_iterator, **updater_kwargs): pass
[docs] def upload_records( self, collection_name: str, records: Iterable[types.Record], batch_size: int = 64, parallel: int = 1, method: Optional[str] = None, max_retries: int = 3, wait: bool = False, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> None: batches_iterator = self._updater_class.iterate_records_batches( records=records, batch_size=batch_size ) self._upload_collection( batches_iterator=batches_iterator, collection_name=collection_name, max_retries=max_retries, parallel=parallel, method=method, shard_key_selector=shard_key_selector, wait=wait, )
[docs] def upload_points( self, collection_name: str, points: Iterable[types.PointStruct], batch_size: int = 64, parallel: int = 1, method: Optional[str] = None, max_retries: int = 3, wait: bool = False, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> None: batches_iterator = self._updater_class.iterate_records_batches( records=points, batch_size=batch_size ) self._upload_collection( batches_iterator=batches_iterator, collection_name=collection_name, max_retries=max_retries, parallel=parallel, method=method, wait=wait, shard_key_selector=shard_key_selector, )
[docs] def upload_collection( self, collection_name: str, vectors: Union[ dict[str, types.NumpyArray], types.NumpyArray, Iterable[types.VectorStruct] ], payload: Optional[Iterable[dict[Any, Any]]] = None, ids: Optional[Iterable[types.PointId]] = None, batch_size: int = 64, parallel: int = 1, method: Optional[str] = None, max_retries: int = 3, wait: bool = False, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> None: batches_iterator = self._updater_class.iterate_batches( vectors=vectors, payload=payload, ids=ids, batch_size=batch_size ) self._upload_collection( batches_iterator=batches_iterator, collection_name=collection_name, max_retries=max_retries, parallel=parallel, method=method, wait=wait, shard_key_selector=shard_key_selector, )
[docs] async def create_payload_index( self, collection_name: str, field_name: str, field_schema: Optional[types.PayloadSchemaType] = None, field_type: Optional[types.PayloadSchemaType] = None, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, **kwargs: Any, ) -> types.UpdateResult: if field_type is not None: show_warning_once( message="field_type is deprecated, use field_schema instead", category=DeprecationWarning, stacklevel=5, idx="payload-index-field-type", ) field_schema = field_type if self._prefer_grpc: field_index_params = None if isinstance(field_schema, models.PayloadSchemaType): field_schema = RestToGrpc.convert_payload_schema_type(field_schema) if isinstance(field_schema, int): field_schema = grpc_payload_schema_to_field_type(field_schema) if isinstance(field_schema, get_args(models.PayloadSchemaParams)): field_schema = RestToGrpc.convert_payload_schema_params(field_schema) if isinstance(field_schema, grpc.PayloadIndexParams): field_index_params = field_schema name = field_index_params.WhichOneof("index_params") index_params = getattr(field_index_params, name) if isinstance(index_params, grpc.TextIndexParams): field_schema = grpc.FieldType.FieldTypeText if isinstance(index_params, grpc.IntegerIndexParams): field_schema = grpc.FieldType.FieldTypeInteger if isinstance(index_params, grpc.KeywordIndexParams): field_schema = grpc.FieldType.FieldTypeKeyword if isinstance(index_params, grpc.FloatIndexParams): field_schema = grpc.FieldType.FieldTypeFloat if isinstance(index_params, grpc.GeoIndexParams): field_schema = grpc.FieldType.FieldTypeGeo if isinstance(index_params, grpc.BoolIndexParams): field_schema = grpc.FieldType.FieldTypeBool if isinstance(index_params, grpc.DatetimeIndexParams): field_schema = grpc.FieldType.FieldTypeDatetime if isinstance(index_params, grpc.UuidIndexParams): field_schema = grpc.FieldType.FieldTypeUuid request = grpc.CreateFieldIndexCollection( collection_name=collection_name, field_name=field_name, field_type=field_schema, field_index_params=field_index_params, wait=wait, ordering=ordering, ) return GrpcToRest.convert_update_result( (await self.grpc_points.CreateFieldIndex(request, timeout=self._timeout)).result ) if isinstance(field_schema, int): field_schema = GrpcToRest.convert_payload_schema_type(field_schema) if isinstance(field_schema, grpc.PayloadIndexParams): field_schema = GrpcToRest.convert_payload_schema_params(field_schema) result: Optional[types.UpdateResult] = ( await self.openapi_client.indexes_api.create_field_index( collection_name=collection_name, create_field_index=models.CreateFieldIndex( field_name=field_name, field_schema=field_schema ), wait=wait, ordering=ordering, ) ).result assert result is not None, "Create field index returned None" return result
[docs] async def delete_payload_index( self, collection_name: str, field_name: str, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: request = grpc.DeleteFieldIndexCollection( collection_name=collection_name, field_name=field_name, wait=wait, ordering=ordering, ) return GrpcToRest.convert_update_result( (await self.grpc_points.DeleteFieldIndex(request, timeout=self._timeout)).result ) result: Optional[types.UpdateResult] = ( await self.openapi_client.indexes_api.delete_field_index( collection_name=collection_name, field_name=field_name, wait=wait, ordering=ordering, ) ).result assert result is not None, "Delete field index returned None" return result
[docs] async def list_snapshots( self, collection_name: str, **kwargs: Any ) -> list[types.SnapshotDescription]: if self._prefer_grpc: snapshots = ( await self.grpc_snapshots.List( grpc.ListSnapshotsRequest(collection_name=collection_name), timeout=self._timeout, ) ).snapshot_descriptions return [GrpcToRest.convert_snapshot_description(snapshot) for snapshot in snapshots] snapshots = ( await self.openapi_client.snapshots_api.list_snapshots(collection_name=collection_name) ).result assert snapshots is not None, "List snapshots API returned None result" return snapshots
[docs] async def create_snapshot( self, collection_name: str, wait: bool = True, **kwargs: Any ) -> Optional[types.SnapshotDescription]: if self._prefer_grpc: snapshot = ( await self.grpc_snapshots.Create( grpc.CreateSnapshotRequest(collection_name=collection_name), timeout=self._timeout, ) ).snapshot_description return GrpcToRest.convert_snapshot_description(snapshot) return ( await self.openapi_client.snapshots_api.create_snapshot( collection_name=collection_name, wait=wait ) ).result
[docs] async def delete_snapshot( self, collection_name: str, snapshot_name: str, wait: bool = True, **kwargs: Any ) -> Optional[bool]: if self._prefer_grpc: await self.grpc_snapshots.Delete( grpc.DeleteSnapshotRequest( collection_name=collection_name, snapshot_name=snapshot_name ), timeout=self._timeout, ) return True return ( await self.openapi_client.snapshots_api.delete_snapshot( collection_name=collection_name, snapshot_name=snapshot_name, wait=wait ) ).result
[docs] async def list_full_snapshots(self, **kwargs: Any) -> list[types.SnapshotDescription]: if self._prefer_grpc: snapshots = ( await self.grpc_snapshots.ListFull( grpc.ListFullSnapshotsRequest(), timeout=self._timeout ) ).snapshot_descriptions return [GrpcToRest.convert_snapshot_description(snapshot) for snapshot in snapshots] snapshots = (await self.openapi_client.snapshots_api.list_full_snapshots()).result assert snapshots is not None, "List full snapshots API returned None result" return snapshots
[docs] async def create_full_snapshot( self, wait: bool = True, **kwargs: Any ) -> types.SnapshotDescription: if self._prefer_grpc: snapshot_description = ( await self.grpc_snapshots.CreateFull( grpc.CreateFullSnapshotRequest(), timeout=self._timeout ) ).snapshot_description return GrpcToRest.convert_snapshot_description(snapshot_description) return (await self.openapi_client.snapshots_api.create_full_snapshot(wait=wait)).result
[docs] async def delete_full_snapshot( self, snapshot_name: str, wait: bool = True, **kwargs: Any ) -> Optional[bool]: if self._prefer_grpc: await self.grpc_snapshots.DeleteFull( grpc.DeleteFullSnapshotRequest(snapshot_name=snapshot_name), timeout=self._timeout ) return True return ( await self.openapi_client.snapshots_api.delete_full_snapshot( snapshot_name=snapshot_name, wait=wait ) ).result
[docs] async def recover_snapshot( self, collection_name: str, location: str, api_key: Optional[str] = None, checksum: Optional[str] = None, priority: Optional[types.SnapshotPriority] = None, wait: bool = True, **kwargs: Any, ) -> Optional[bool]: return ( await self.openapi_client.snapshots_api.recover_from_snapshot( collection_name=collection_name, wait=wait, snapshot_recover=models.SnapshotRecover( location=location, priority=priority, checksum=checksum, api_key=api_key ), ) ).result
[docs] async def list_shard_snapshots( self, collection_name: str, shard_id: int, **kwargs: Any ) -> list[types.SnapshotDescription]: snapshots = ( await self.openapi_client.snapshots_api.list_shard_snapshots( collection_name=collection_name, shard_id=shard_id ) ).result assert snapshots is not None, "List snapshots API returned None result" return snapshots
[docs] async def create_shard_snapshot( self, collection_name: str, shard_id: int, wait: bool = True, **kwargs: Any ) -> Optional[types.SnapshotDescription]: return ( await self.openapi_client.snapshots_api.create_shard_snapshot( collection_name=collection_name, shard_id=shard_id, wait=wait ) ).result
[docs] async def delete_shard_snapshot( self, collection_name: str, shard_id: int, snapshot_name: str, wait: bool = True, **kwargs: Any, ) -> Optional[bool]: return ( await self.openapi_client.snapshots_api.delete_shard_snapshot( collection_name=collection_name, shard_id=shard_id, snapshot_name=snapshot_name, wait=wait, ) ).result
[docs] async def recover_shard_snapshot( self, collection_name: str, shard_id: int, location: str, api_key: Optional[str] = None, checksum: Optional[str] = None, priority: Optional[types.SnapshotPriority] = None, wait: bool = True, **kwargs: Any, ) -> Optional[bool]: return ( await self.openapi_client.snapshots_api.recover_shard_from_snapshot( collection_name=collection_name, shard_id=shard_id, wait=wait, shard_snapshot_recover=models.ShardSnapshotRecover( location=location, priority=priority, checksum=checksum, api_key=api_key ), ) ).result
[docs] async def lock_storage(self, reason: str, **kwargs: Any) -> types.LocksOption: result: Optional[types.LocksOption] = ( await self.openapi_client.service_api.post_locks( models.LocksOption(error_message=reason, write=True) ) ).result assert result is not None, "Lock storage returned None" return result
[docs] async def unlock_storage(self, **kwargs: Any) -> types.LocksOption: result: Optional[types.LocksOption] = ( await self.openapi_client.service_api.post_locks(models.LocksOption(write=False)) ).result assert result is not None, "Post locks returned None" return result
[docs] async def get_locks(self, **kwargs: Any) -> types.LocksOption: result: Optional[types.LocksOption] = ( await self.openapi_client.service_api.get_locks() ).result assert result is not None, "Get locks returned None" return result
[docs] async def create_shard_key( self, collection_name: str, shard_key: types.ShardKey, shards_number: Optional[int] = None, replication_factor: Optional[int] = None, placement: Optional[list[int]] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> bool: if self._prefer_grpc: if isinstance(shard_key, get_args_subscribed(models.ShardKey)): shard_key = RestToGrpc.convert_shard_key(shard_key) return ( await self.grpc_collections.CreateShardKey( grpc.CreateShardKeyRequest( collection_name=collection_name, timeout=timeout, request=grpc.CreateShardKey( shard_key=shard_key, shards_number=shards_number, replication_factor=replication_factor, placement=placement or [], ), ), timeout=timeout if timeout is not None else self._timeout, ) ).result else: result = ( await self.openapi_client.distributed_api.create_shard_key( collection_name=collection_name, timeout=timeout, create_sharding_key=models.CreateShardingKey( shard_key=shard_key, shards_number=shards_number, replication_factor=replication_factor, placement=placement, ), ) ).result assert result is not None, "Create shard key returned None" return result
[docs] async def delete_shard_key( self, collection_name: str, shard_key: types.ShardKey, timeout: Optional[int] = None, **kwargs: Any, ) -> bool: if self._prefer_grpc: if isinstance(shard_key, get_args_subscribed(models.ShardKey)): shard_key = RestToGrpc.convert_shard_key(shard_key) return ( await self.grpc_collections.DeleteShardKey( grpc.DeleteShardKeyRequest( collection_name=collection_name, timeout=timeout, request=grpc.DeleteShardKey(shard_key=shard_key), ), timeout=timeout if timeout is not None else self._timeout, ) ).result else: result = ( await self.openapi_client.distributed_api.delete_shard_key( collection_name=collection_name, timeout=timeout, drop_sharding_key=models.DropShardingKey(shard_key=shard_key), ) ).result assert result is not None, "Delete shard key returned None" return result
[docs] async def info(self) -> types.VersionInfo: if self._prefer_grpc: version_info = await self.grpc_root.HealthCheck( grpc.HealthCheckRequest(), timeout=self._timeout ) return GrpcToRest.convert_health_check_reply(version_info) version_info = await self.rest.service_api.root() assert version_info is not None, "Healthcheck returned None" return version_info

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community