Shortcuts

Source code for qdrant_client.client_base

from typing import Any, Iterable, Mapping, Optional, Sequence, Union

from qdrant_client.conversions import common_types as types
from qdrant_client.http import models


[docs]class QdrantBase: def __init__(self, **kwargs: Any): pass
[docs] def search_batch( self, collection_name: str, requests: Sequence[types.SearchRequest], **kwargs: Any, ) -> list[list[types.ScoredPoint]]: raise NotImplementedError()
[docs] def search( self, collection_name: str, query_vector: Union[ types.NumpyArray, Sequence[float], tuple[str, list[float]], types.NamedVector, types.NamedSparseVector, ], query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: raise NotImplementedError()
[docs] def search_groups( self, collection_name: str, query_vector: Union[ types.NumpyArray, Sequence[float], tuple[str, list[float]], types.NamedVector, types.NamedSparseVector, ], group_by: str, query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, group_size: int = 1, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, **kwargs: Any, ) -> types.GroupsResult: raise NotImplementedError()
[docs] def search_matrix_offsets( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, **kwargs: Any, ) -> types.SearchMatrixOffsetsResponse: raise NotImplementedError()
[docs] def search_matrix_pairs( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, **kwargs: Any, ) -> types.SearchMatrixPairsResponse: raise NotImplementedError()
[docs] def query_batch_points( self, collection_name: str, requests: Sequence[types.QueryRequest], **kwargs: Any, ) -> list[types.QueryResponse]: raise NotImplementedError()
[docs] def query_points( self, collection_name: str, query: Union[ types.PointId, list[float], list[list[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, types.Image, types.InferenceObject, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, lookup_from: Optional[types.LookupLocation] = None, **kwargs: Any, ) -> types.QueryResponse: raise NotImplementedError()
[docs] def query_points_groups( self, collection_name: str, group_by: str, query: Union[ types.PointId, list[float], list[list[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, types.Image, types.InferenceObject, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, group_size: int = 3, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, lookup_from: Optional[types.LookupLocation] = None, **kwargs: Any, ) -> types.GroupsResult: raise NotImplementedError()
[docs] def recommend_batch( self, collection_name: str, requests: Sequence[types.RecommendRequest], **kwargs: Any, ) -> list[list[types.ScoredPoint]]: raise NotImplementedError()
[docs] def recommend( self, collection_name: str, positive: Optional[Sequence[types.RecommendExample]] = None, negative: Optional[Sequence[types.RecommendExample]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], types.PayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, strategy: Optional[types.RecommendStrategy] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: raise NotImplementedError()
[docs] def recommend_groups( self, collection_name: str, group_by: str, positive: Optional[Sequence[types.RecommendExample]] = None, negative: Optional[Sequence[types.RecommendExample]] = None, query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, group_size: int = 1, score_threshold: Optional[float] = None, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, using: Optional[str] = None, lookup_from: Optional[models.LookupLocation] = None, with_lookup: Optional[types.WithLookupInterface] = None, strategy: Optional[types.RecommendStrategy] = None, **kwargs: Any, ) -> types.GroupsResult: raise NotImplementedError()
[docs] def discover( self, collection_name: str, target: Optional[types.TargetVector] = None, context: Optional[Sequence[types.ContextExamplePair]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], types.PayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: raise NotImplementedError()
[docs] def discover_batch( self, collection_name: str, requests: Sequence[types.DiscoverRequest], **kwargs: Any, ) -> list[list[types.ScoredPoint]]: raise NotImplementedError()
[docs] def scroll( self, collection_name: str, scroll_filter: Optional[types.Filter] = None, limit: int = 10, order_by: Optional[types.OrderBy] = None, offset: Optional[types.PointId] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, **kwargs: Any, ) -> tuple[list[types.Record], Optional[types.PointId]]: raise NotImplementedError()
[docs] def count( self, collection_name: str, count_filter: Optional[types.Filter] = None, exact: bool = True, **kwargs: Any, ) -> types.CountResult: raise NotImplementedError()
[docs] def facet( self, collection_name: str, key: str, facet_filter: Optional[types.Filter] = None, limit: int = 10, exact: bool = False, **kwargs: Any, ) -> types.FacetResponse: raise NotImplementedError()
[docs] def upsert( self, collection_name: str, points: types.Points, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def update_vectors( self, collection_name: str, points: Sequence[types.PointVectors], **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def delete_vectors( self, collection_name: str, vectors: Sequence[str], points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def retrieve( self, collection_name: str, ids: Sequence[types.PointId], with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, **kwargs: Any, ) -> list[types.Record]: raise NotImplementedError()
[docs] def delete( self, collection_name: str, points_selector: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def set_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, key: Optional[str] = None, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def overwrite_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def delete_payload( self, collection_name: str, keys: Sequence[str], points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def clear_payload( self, collection_name: str, points_selector: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def batch_update_points( self, collection_name: str, update_operations: Sequence[types.UpdateOperation], **kwargs: Any, ) -> list[types.UpdateResult]: raise NotImplementedError()
[docs] def update_collection_aliases( self, change_aliases_operations: Sequence[types.AliasOperations], **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] def get_collection_aliases( self, collection_name: str, **kwargs: Any ) -> types.CollectionsAliasesResponse: raise NotImplementedError()
[docs] def get_aliases(self, **kwargs: Any) -> types.CollectionsAliasesResponse: raise NotImplementedError()
[docs] def get_collections(self, **kwargs: Any) -> types.CollectionsResponse: raise NotImplementedError()
[docs] def get_collection(self, collection_name: str, **kwargs: Any) -> types.CollectionInfo: raise NotImplementedError()
[docs] def collection_exists(self, collection_name: str, **kwargs: Any) -> bool: raise NotImplementedError()
[docs] def update_collection( self, collection_name: str, **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] def delete_collection(self, collection_name: str, **kwargs: Any) -> bool: raise NotImplementedError()
[docs] def create_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] def recreate_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] def upload_records( self, collection_name: str, records: Iterable[types.Record], **kwargs: Any, ) -> None: raise NotImplementedError()
[docs] def upload_points( self, collection_name: str, points: Iterable[types.PointStruct], **kwargs: Any, ) -> None: raise NotImplementedError()
[docs] def upload_collection( self, collection_name: str, vectors: Union[ dict[str, types.NumpyArray], types.NumpyArray, Iterable[types.VectorStruct] ], payload: Optional[Iterable[dict[Any, Any]]] = None, ids: Optional[Iterable[types.PointId]] = None, **kwargs: Any, ) -> None: raise NotImplementedError()
[docs] def create_payload_index( self, collection_name: str, field_name: str, field_schema: Optional[types.PayloadSchemaType] = None, field_type: Optional[types.PayloadSchemaType] = None, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def delete_payload_index( self, collection_name: str, field_name: str, **kwargs: Any, ) -> types.UpdateResult: raise NotImplementedError()
[docs] def list_snapshots( self, collection_name: str, **kwargs: Any ) -> list[types.SnapshotDescription]: raise NotImplementedError()
[docs] def create_snapshot( self, collection_name: str, **kwargs: Any ) -> Optional[types.SnapshotDescription]: raise NotImplementedError()
[docs] def delete_snapshot( self, collection_name: str, snapshot_name: str, **kwargs: Any ) -> Optional[bool]: raise NotImplementedError()
[docs] def list_full_snapshots(self, **kwargs: Any) -> list[types.SnapshotDescription]: raise NotImplementedError()
[docs] def create_full_snapshot(self, **kwargs: Any) -> Optional[types.SnapshotDescription]: raise NotImplementedError()
[docs] def delete_full_snapshot(self, snapshot_name: str, **kwargs: Any) -> Optional[bool]: raise NotImplementedError()
[docs] def recover_snapshot( self, collection_name: str, location: str, **kwargs: Any, ) -> Optional[bool]: raise NotImplementedError()
[docs] def list_shard_snapshots( self, collection_name: str, shard_id: int, **kwargs: Any ) -> list[types.SnapshotDescription]: raise NotImplementedError()
[docs] def create_shard_snapshot( self, collection_name: str, shard_id: int, **kwargs: Any ) -> Optional[types.SnapshotDescription]: raise NotImplementedError()
[docs] def delete_shard_snapshot( self, collection_name: str, shard_id: int, snapshot_name: str, **kwargs: Any ) -> Optional[bool]: raise NotImplementedError()
[docs] def recover_shard_snapshot( self, collection_name: str, shard_id: int, location: str, **kwargs: Any, ) -> Optional[bool]: raise NotImplementedError()
[docs] def lock_storage(self, reason: str, **kwargs: Any) -> types.LocksOption: raise NotImplementedError()
[docs] def unlock_storage(self, **kwargs: Any) -> types.LocksOption: raise NotImplementedError()
[docs] def get_locks(self, **kwargs: Any) -> types.LocksOption: raise NotImplementedError()
[docs] def close(self, **kwargs: Any) -> None: pass
[docs] def migrate( self, dest_client: "QdrantBase", collection_names: Optional[list[str]] = None, batch_size: int = 100, recreate_on_collision: bool = False, ) -> None: raise NotImplementedError()
[docs] def create_shard_key( self, collection_name: str, shard_key: types.ShardKey, shards_number: Optional[int] = None, replication_factor: Optional[int] = None, placement: Optional[list[int]] = None, **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] def delete_shard_key( self, collection_name: str, shard_key: types.ShardKey, **kwargs: Any, ) -> bool: raise NotImplementedError()
[docs] def info(self) -> types.VersionInfo: raise NotImplementedError()

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community