Shortcuts

Source code for qdrant_client.conversions.conversion

from datetime import date, datetime, timezone
from typing import Any, Mapping, Optional, Sequence, Union, get_args

from google.protobuf.json_format import MessageToDict
from google.protobuf.timestamp_pb2 import Timestamp

try:
    from google.protobuf.pyext._message import MessageMapContainer  # type: ignore
except ImportError:
    pass

from qdrant_client import grpc
from qdrant_client.grpc import ListValue, NullValue, Struct, Value
from qdrant_client.http.models import models as rest
from qdrant_client._pydantic_compat import construct, to_jsonable_python
from qdrant_client.conversions.common_types import get_args_subscribed


[docs]def has_field(message: Any, field: str) -> bool: """ Same as protobuf HasField, but also works for primitive values (https://stackoverflow.com/questions/51918871/check-if-a-field-has-been-set-in-protocol-buffer-3) Args: message (Any): protobuf message field (str): name of the field """ try: return message.HasField(field) except ValueError: all_fields = set([descriptor.name for descriptor, _value in message.ListFields()]) return field in all_fields
[docs]def json_to_value(payload: Any) -> Value: if payload is None: return Value(null_value=NullValue.NULL_VALUE) if isinstance(payload, bool): return Value(bool_value=payload) if isinstance(payload, int): return Value(integer_value=payload) if isinstance(payload, float): return Value(double_value=payload) if isinstance(payload, str): return Value(string_value=payload) if isinstance(payload, (list, tuple)): return Value(list_value=ListValue(values=[json_to_value(v) for v in payload])) if isinstance(payload, dict): return Value( struct_value=Struct(fields=dict((k, json_to_value(v)) for k, v in payload.items())) ) if isinstance(payload, datetime) or isinstance(payload, date): return Value(string_value=to_jsonable_python(payload)) raise ValueError(f"Not supported json value: {payload}") # pragma: no cover
[docs]def value_to_json(value: Value) -> Any: if isinstance(value, Value): value_ = MessageToDict(value, preserving_proto_field_name=False) else: value_ = value if "integerValue" in value_: # by default int are represented as string for precision # But in python it is OK to just use `int` return int(value_["integerValue"]) if "doubleValue" in value_: return value_["doubleValue"] if "stringValue" in value_: return value_["stringValue"] if "boolValue" in value_: return value_["boolValue"] if "structValue" in value_: if "fields" not in value_["structValue"]: return {} return dict( (key, value_to_json(val)) for key, val in value_["structValue"]["fields"].items() ) if "listValue" in value_: if "values" in value_["listValue"]: return list(value_to_json(val) for val in value_["listValue"]["values"]) else: return [] if "nullValue" in value_: return None raise ValueError(f"Not supported value: {value_}") # pragma: no cover
[docs]def payload_to_grpc(payload: dict[str, Any]) -> dict[str, Value]: return dict((key, json_to_value(val)) for key, val in payload.items())
[docs]def grpc_to_payload(grpc_: dict[str, Value]) -> dict[str, Any]: return dict((key, value_to_json(val)) for key, val in grpc_.items())
[docs]def grpc_payload_schema_to_field_type(model: grpc.PayloadSchemaType) -> grpc.FieldType: if model == grpc.PayloadSchemaType.Keyword: return grpc.FieldType.FieldTypeKeyword if model == grpc.PayloadSchemaType.Integer: return grpc.FieldType.FieldTypeInteger if model == grpc.PayloadSchemaType.Float: return grpc.FieldType.FieldTypeFloat if model == grpc.PayloadSchemaType.Bool: return grpc.FieldType.FieldTypeBool if model == grpc.PayloadSchemaType.Geo: return grpc.FieldType.FieldTypeGeo if model == grpc.PayloadSchemaType.Text: return grpc.FieldType.FieldTypeText if model == grpc.PayloadSchemaType.Datetime: return grpc.FieldType.FieldTypeDatetime if model == grpc.PayloadSchemaType.Uuid: return grpc.FieldType.FieldTypeUuid raise ValueError(f"invalid PayloadSchemaType model: {model}") # pragma: no cover
[docs]def grpc_field_type_to_payload_schema(model: grpc.FieldType) -> grpc.PayloadSchemaType: if model == grpc.FieldType.FieldTypeKeyword: return grpc.PayloadSchemaType.Keyword if model == grpc.FieldType.FieldTypeInteger: return grpc.PayloadSchemaType.Integer if model == grpc.FieldType.FieldTypeFloat: return grpc.PayloadSchemaType.Float if model == grpc.FieldType.FieldTypeBool: return grpc.PayloadSchemaType.Bool if model == grpc.FieldType.FieldTypeGeo: return grpc.PayloadSchemaType.Geo if model == grpc.FieldType.FieldTypeText: return grpc.PayloadSchemaType.Text if model == grpc.FieldType.FieldTypeDatetime: return grpc.PayloadSchemaType.Datetime if model == grpc.FieldType.FieldTypeUuid: return grpc.PayloadSchemaType.Uuid raise ValueError(f"invalid FieldType model: {model}") # pragma: no cover
[docs]class GrpcToRest:
[docs] @classmethod def convert_condition(cls, model: grpc.Condition) -> rest.Condition: name = model.WhichOneof("condition_one_of") if name is None: raise ValueError(f"invalid Condition model: {model}") # pragma: no cover val = getattr(model, name) if name == "field": return cls.convert_field_condition(val) if name == "filter": return cls.convert_filter(val) if name == "has_id": return cls.convert_has_id_condition(val) if name == "has_vector": return cls.convert_has_vector_condition(val) if name == "is_empty": return cls.convert_is_empty_condition(val) if name == "is_null": return cls.convert_is_null_condition(val) if name == "nested": return cls.convert_nested_condition(val) raise ValueError(f"invalid Condition model: {model}") # pragma: no cover
[docs] @classmethod def convert_filter(cls, model: grpc.Filter) -> rest.Filter: return rest.Filter( must=[cls.convert_condition(condition) for condition in model.must], should=[cls.convert_condition(condition) for condition in model.should], must_not=[cls.convert_condition(condition) for condition in model.must_not], min_should=( rest.MinShould( conditions=[ cls.convert_condition(condition) for condition in model.min_should.conditions ], min_count=model.min_should.min_count, ) if model.HasField("min_should") else None ), )
[docs] @classmethod def convert_range(cls, model: grpc.Range) -> rest.Range: return rest.Range( gt=model.gt if model.HasField("gt") else None, gte=model.gte if model.HasField("gte") else None, lt=model.lt if model.HasField("lt") else None, lte=model.lte if model.HasField("lte") else None, )
[docs] @classmethod def convert_timestamp(cls, model: Timestamp) -> datetime: return model.ToDatetime(tzinfo=timezone.utc)
[docs] @classmethod def convert_datetime_range(cls, model: grpc.DatetimeRange) -> rest.DatetimeRange: return rest.DatetimeRange( gt=cls.convert_timestamp(model.gt) if model.HasField("gt") else None, gte=cls.convert_timestamp(model.gte) if model.HasField("gte") else None, lt=cls.convert_timestamp(model.lt) if model.HasField("lt") else None, lte=cls.convert_timestamp(model.lte) if model.HasField("lte") else None, )
[docs] @classmethod def convert_geo_radius(cls, model: grpc.GeoRadius) -> rest.GeoRadius: return rest.GeoRadius(center=cls.convert_geo_point(model.center), radius=model.radius)
[docs] @classmethod def convert_collection_description( cls, model: grpc.CollectionDescription ) -> rest.CollectionDescription: return rest.CollectionDescription(name=model.name)
[docs] @classmethod def convert_collection_info(cls, model: grpc.CollectionInfo) -> rest.CollectionInfo: return rest.CollectionInfo( config=cls.convert_collection_config(model.config), optimizer_status=cls.convert_optimizer_status(model.optimizer_status), payload_schema=cls.convert_payload_schema(model.payload_schema), segments_count=model.segments_count, status=cls.convert_collection_status(model.status), vectors_count=model.vectors_count if model.HasField("vectors_count") else None, points_count=model.points_count, indexed_vectors_count=model.indexed_vectors_count or 0, )
[docs] @classmethod def convert_optimizer_status(cls, model: grpc.OptimizerStatus) -> rest.OptimizersStatus: if model.ok: return rest.OptimizersStatusOneOf.OK else: return rest.OptimizersStatusOneOf1(error=model.error)
[docs] @classmethod def convert_collection_config(cls, model: grpc.CollectionConfig) -> rest.CollectionConfig: return rest.CollectionConfig( hnsw_config=cls.convert_hnsw_config(model.hnsw_config), optimizer_config=cls.convert_optimizer_config(model.optimizer_config), params=cls.convert_collection_params(model.params), wal_config=cls.convert_wal_config(model.wal_config), quantization_config=( cls.convert_quantization_config(model.quantization_config) if model.HasField("quantization_config") else None ), strict_mode_config=cls.convert_strict_mode_config(model.strict_mode_config) if model.HasField("strict_mode_config") else None, )
[docs] @classmethod def convert_hnsw_config_diff(cls, model: grpc.HnswConfigDiff) -> rest.HnswConfigDiff: return rest.HnswConfigDiff( ef_construct=model.ef_construct if model.HasField("ef_construct") else None, m=model.m if model.HasField("m") else None, full_scan_threshold=( model.full_scan_threshold if model.HasField("full_scan_threshold") else None ), max_indexing_threads=( model.max_indexing_threads if model.HasField("max_indexing_threads") else None ), on_disk=model.on_disk if model.HasField("on_disk") else None, payload_m=model.payload_m if model.HasField("payload_m") else None, )
[docs] @classmethod def convert_hnsw_config(cls, model: grpc.HnswConfigDiff) -> rest.HnswConfig: return rest.HnswConfig( ef_construct=model.ef_construct if model.HasField("ef_construct") else None, m=model.m if model.HasField("m") else None, full_scan_threshold=( model.full_scan_threshold if model.HasField("full_scan_threshold") else None ), max_indexing_threads=( model.max_indexing_threads if model.HasField("max_indexing_threads") else None ), on_disk=model.on_disk if model.HasField("on_disk") else None, payload_m=model.payload_m if model.HasField("payload_m") else None, )
[docs] @classmethod def convert_max_optimization_threads( cls, model: grpc.MaxOptimizationThreads ) -> rest.MaxOptimizationThreads: name = model.WhichOneof("variant") if name is None: raise ValueError(f"invalid MaxOptimizationThreads model: {model}") # pragma: no cover val = getattr(model, name) if name == "setting": if val == grpc.MaxOptimizationThreads.Setting.Auto: return rest.MaxOptimizationThreadsSetting.AUTO else: raise ValueError( f"invalid MaxOptimizationThreads model: {model}" ) # pragma: no cover elif name == "value": return val else: raise ValueError(f"invalid MaxOptimizationThreads model: {model}") # pragma: no cover
[docs] @classmethod def convert_optimizer_config(cls, model: grpc.OptimizersConfigDiff) -> rest.OptimizersConfig: max_optimization_threads = None if model.HasField("deprecated_max_optimization_threads"): max_optimization_threads = model.deprecated_max_optimization_threads elif model.HasField("max_optimization_threads"): max_optimization_threads = cls.convert_max_optimization_threads( model.max_optimization_threads ) if not isinstance(max_optimization_threads, int): max_optimization_threads = None return rest.OptimizersConfig( default_segment_number=( model.default_segment_number if model.HasField("default_segment_number") else None ), deleted_threshold=( model.deleted_threshold if model.HasField("deleted_threshold") else None ), flush_interval_sec=( model.flush_interval_sec if model.HasField("flush_interval_sec") else None ), indexing_threshold=( model.indexing_threshold if model.HasField("indexing_threshold") else None ), max_optimization_threads=max_optimization_threads, max_segment_size=( model.max_segment_size if model.HasField("max_segment_size") else None ), memmap_threshold=( model.memmap_threshold if model.HasField("memmap_threshold") else None ), vacuum_min_vector_number=( model.vacuum_min_vector_number if model.HasField("vacuum_min_vector_number") else None ), )
[docs] @classmethod def convert_distance(cls, model: grpc.Distance) -> rest.Distance: if model == grpc.Distance.Cosine: return rest.Distance.COSINE elif model == grpc.Distance.Euclid: return rest.Distance.EUCLID elif model == grpc.Distance.Manhattan: return rest.Distance.MANHATTAN elif model == grpc.Distance.Dot: return rest.Distance.DOT else: raise ValueError(f"invalid Distance model: {model}") # pragma: no cover
[docs] @classmethod def convert_wal_config(cls, model: grpc.WalConfigDiff) -> rest.WalConfig: return rest.WalConfig( wal_capacity_mb=model.wal_capacity_mb if model.HasField("wal_capacity_mb") else None, wal_segments_ahead=( model.wal_segments_ahead if model.HasField("wal_segments_ahead") else None ), )
[docs] @classmethod def convert_payload_schema( cls, model: dict[str, grpc.PayloadSchemaInfo] ) -> dict[str, rest.PayloadIndexInfo]: return {key: cls.convert_payload_schema_info(info) for key, info in model.items()}
[docs] @classmethod def convert_payload_schema_info(cls, model: grpc.PayloadSchemaInfo) -> rest.PayloadIndexInfo: return rest.PayloadIndexInfo( data_type=cls.convert_payload_schema_type(model.data_type), params=( cls.convert_payload_schema_params(model.params) if model.HasField("params") else None ), points=model.points, )
[docs] @classmethod def convert_payload_schema_params( cls, model: grpc.PayloadIndexParams ) -> rest.PayloadSchemaParams: if model.HasField("text_index_params"): text_index_params = model.text_index_params return cls.convert_text_index_params(text_index_params) if model.HasField("integer_index_params"): integer_index_params = model.integer_index_params return cls.convert_integer_index_params(integer_index_params) if model.HasField("keyword_index_params"): keyword_index_params = model.keyword_index_params return cls.convert_keyword_index_params(keyword_index_params) if model.HasField("float_index_params"): float_index_params = model.float_index_params return cls.convert_float_index_params(float_index_params) if model.HasField("geo_index_params"): geo_index_params = model.geo_index_params return cls.convert_geo_index_params(geo_index_params) if model.HasField("bool_index_params"): bool_index_params = model.bool_index_params return cls.convert_bool_index_params(bool_index_params) if model.HasField("datetime_index_params"): datetime_index_params = model.datetime_index_params return cls.convert_datetime_index_params(datetime_index_params) if model.HasField("uuid_index_params"): uuid_index_params = model.uuid_index_params return cls.convert_uuid_index_params(uuid_index_params) raise ValueError(f"invalid PayloadIndexParams model: {model}") # pragma: no cover
[docs] @classmethod def convert_payload_schema_type(cls, model: grpc.PayloadSchemaType) -> rest.PayloadSchemaType: if model == grpc.PayloadSchemaType.Float: return rest.PayloadSchemaType.FLOAT elif model == grpc.PayloadSchemaType.Geo: return rest.PayloadSchemaType.GEO elif model == grpc.PayloadSchemaType.Integer: return rest.PayloadSchemaType.INTEGER elif model == grpc.PayloadSchemaType.Keyword: return rest.PayloadSchemaType.KEYWORD elif model == grpc.PayloadSchemaType.Bool: return rest.PayloadSchemaType.BOOL elif model == grpc.PayloadSchemaType.Text: return rest.PayloadSchemaType.TEXT elif model == grpc.PayloadSchemaType.Datetime: return rest.PayloadSchemaType.DATETIME elif model == grpc.PayloadSchemaType.Uuid: return rest.PayloadSchemaType.UUID else: raise ValueError(f"invalid PayloadSchemaType model: {model}") # pragma: no cover
[docs] @classmethod def convert_collection_status(cls, model: grpc.CollectionStatus) -> rest.CollectionStatus: if model == grpc.CollectionStatus.Green: return rest.CollectionStatus.GREEN elif model == grpc.CollectionStatus.Yellow: return rest.CollectionStatus.YELLOW elif model == grpc.CollectionStatus.Red: return rest.CollectionStatus.RED elif model == grpc.CollectionStatus.Grey: return rest.CollectionStatus.GREY raise ValueError(f"invalid CollectionStatus model: {model}") # pragma: no cover
[docs] @classmethod def convert_update_result(cls, model: grpc.UpdateResult) -> rest.UpdateResult: return rest.UpdateResult( operation_id=model.operation_id, status=cls.convert_update_status(model.status), )
[docs] @classmethod def convert_update_status(cls, model: grpc.UpdateStatus) -> rest.UpdateStatus: if model == grpc.UpdateStatus.Acknowledged: return rest.UpdateStatus.ACKNOWLEDGED elif model == grpc.UpdateStatus.Completed: return rest.UpdateStatus.COMPLETED else: raise ValueError(f"invalid UpdateStatus model: {model}") # pragma: no cover
[docs] @classmethod def convert_has_id_condition(cls, model: grpc.HasIdCondition) -> rest.HasIdCondition: return rest.HasIdCondition(has_id=[cls.convert_point_id(idx) for idx in model.has_id])
[docs] @classmethod def convert_has_vector_condition( cls, model: grpc.HasVectorCondition ) -> rest.HasVectorCondition: return rest.HasVectorCondition(has_vector=model.has_vector)
[docs] @classmethod def convert_point_id(cls, model: grpc.PointId) -> rest.ExtendedPointId: name = model.WhichOneof("point_id_options") if name == "num": return model.num if name == "uuid": return model.uuid raise ValueError(f"invalid PointId model: {model}") # pragma: no cover
[docs] @classmethod def convert_delete_alias(cls, model: grpc.DeleteAlias) -> rest.DeleteAlias: return rest.DeleteAlias(alias_name=model.alias_name)
[docs] @classmethod def convert_rename_alias(cls, model: grpc.RenameAlias) -> rest.RenameAlias: return rest.RenameAlias( old_alias_name=model.old_alias_name, new_alias_name=model.new_alias_name )
[docs] @classmethod def convert_is_empty_condition(cls, model: grpc.IsEmptyCondition) -> rest.IsEmptyCondition: return rest.IsEmptyCondition(is_empty=rest.PayloadField(key=model.key))
[docs] @classmethod def convert_is_null_condition(cls, model: grpc.IsNullCondition) -> rest.IsNullCondition: return rest.IsNullCondition(is_null=rest.PayloadField(key=model.key))
[docs] @classmethod def convert_nested_condition(cls, model: grpc.NestedCondition) -> rest.NestedCondition: return rest.NestedCondition( nested=rest.Nested( key=model.key, filter=cls.convert_filter(model.filter), ) )
[docs] @classmethod def convert_search_params(cls, model: grpc.SearchParams) -> rest.SearchParams: return rest.SearchParams( hnsw_ef=model.hnsw_ef if model.HasField("hnsw_ef") else None, exact=model.exact if model.HasField("exact") else None, quantization=( cls.convert_quantization_search_params(model.quantization) if model.HasField("quantization") else None ), indexed_only=model.indexed_only if model.HasField("indexed_only") else None, )
[docs] @classmethod def convert_create_alias(cls, model: grpc.CreateAlias) -> rest.CreateAlias: return rest.CreateAlias(collection_name=model.collection_name, alias_name=model.alias_name)
[docs] @classmethod def convert_order_value(cls, model: grpc.OrderValue) -> rest.OrderValue: name = model.WhichOneof("variant") if name is None: raise ValueError(f"invalid OrderValue model: {model}") # pragma: no cover val = getattr(model, name) if name == "int": return val if name == "float": return val raise ValueError(f"invalid OrderValue model: {model}") # pragma: no cover
[docs] @classmethod def convert_scored_point(cls, model: grpc.ScoredPoint) -> rest.ScoredPoint: return construct( rest.ScoredPoint, id=cls.convert_point_id(model.id), payload=cls.convert_payload(model.payload) if has_field(model, "payload") else None, score=model.score, vector=cls.convert_vectors_output(model.vectors) if model.HasField("vectors") else None, version=model.version, shard_key=( cls.convert_shard_key(model.shard_key) if model.HasField("shard_key") else None ), order_value=( cls.convert_order_value(model.order_value) if model.HasField("order_value") else None ), )
[docs] @classmethod def convert_payload(cls, model: "MessageMapContainer") -> rest.Payload: return dict((key, value_to_json(model[key])) for key in model)
[docs] @classmethod def convert_values_count(cls, model: grpc.ValuesCount) -> rest.ValuesCount: return rest.ValuesCount( gt=model.gt if model.HasField("gt") else None, gte=model.gte if model.HasField("gte") else None, lt=model.lt if model.HasField("lt") else None, lte=model.lte if model.HasField("lte") else None, )
[docs] @classmethod def convert_geo_bounding_box(cls, model: grpc.GeoBoundingBox) -> rest.GeoBoundingBox: return rest.GeoBoundingBox( bottom_right=cls.convert_geo_point(model.bottom_right), top_left=cls.convert_geo_point(model.top_left), )
[docs] @classmethod def convert_point_struct(cls, model: grpc.PointStruct) -> rest.PointStruct: return rest.PointStruct( id=cls.convert_point_id(model.id), payload=cls.convert_payload(model.payload), vector=cls.convert_vectors(model.vectors) if model.HasField("vectors") else None, )
[docs] @classmethod def convert_field_condition(cls, model: grpc.FieldCondition) -> rest.FieldCondition: geo_bounding_box = ( cls.convert_geo_bounding_box(model.geo_bounding_box) if model.HasField("geo_bounding_box") else None ) geo_radius = ( cls.convert_geo_radius(model.geo_radius) if model.HasField("geo_radius") else None ) match = cls.convert_match(model.match) if model.HasField("match") else None range_: Optional[rest.RangeInterface] = None if model.HasField("range"): range_ = cls.convert_range(model.range) elif model.HasField("datetime_range"): range_ = cls.convert_datetime_range(model.datetime_range) values_count = ( cls.convert_values_count(model.values_count) if model.HasField("values_count") else None ) return rest.FieldCondition( key=model.key, geo_bounding_box=geo_bounding_box, geo_radius=geo_radius, match=match, range=range_, values_count=values_count, )
[docs] @classmethod def convert_match(cls, model: grpc.Match) -> rest.Match: name = model.WhichOneof("match_value") if name is None: raise ValueError(f"invalid Match model: {model}") # pragma: no cover val = getattr(model, name) if name == "integer": return rest.MatchValue(value=val) if name == "boolean": return rest.MatchValue(value=val) if name == "keyword": return rest.MatchValue(value=val) if name == "text": return rest.MatchText(text=val) if name == "keywords": return rest.MatchAny(any=list(val.strings)) if name == "integers": return rest.MatchAny(any=list(val.integers)) if name == "except_keywords": return rest.MatchExcept(**{"except": list(val.strings)}) if name == "except_integers": return rest.MatchExcept(**{"except": list(val.integers)}) raise ValueError(f"invalid Match model: {model}") # pragma: no cover
[docs] @classmethod def convert_wal_config_diff(cls, model: grpc.WalConfigDiff) -> rest.WalConfigDiff: return rest.WalConfigDiff( wal_capacity_mb=model.wal_capacity_mb if model.HasField("wal_capacity_mb") else None, wal_segments_ahead=( model.wal_segments_ahead if model.HasField("wal_segments_ahead") else None ), )
[docs] @classmethod def convert_collection_params(cls, model: grpc.CollectionParams) -> rest.CollectionParams: return rest.CollectionParams( vectors=( cls.convert_vectors_config(model.vectors_config) if model.HasField("vectors_config") else None ), shard_number=model.shard_number, on_disk_payload=model.on_disk_payload, replication_factor=( model.replication_factor if model.HasField("replication_factor") else None ), read_fan_out_factor=( model.read_fan_out_factor if model.HasField("read_fan_out_factor") else None ), write_consistency_factor=( model.write_consistency_factor if model.HasField("write_consistency_factor") else None ), sparse_vectors=cls.convert_sparse_vector_config(model.sparse_vectors_config) if model.HasField("sparse_vectors_config") else None, sharding_method=cls.convert_sharding_method(model.sharding_method) if model.HasField("sharding_method") else None, )
[docs] @classmethod def convert_optimizers_config_diff( cls, model: grpc.OptimizersConfigDiff ) -> rest.OptimizersConfigDiff: max_optimization_threads = None if model.HasField("deprecated_max_optimization_threads"): max_optimization_threads = model.deprecated_max_optimization_threads elif model.HasField("max_optimization_threads"): max_optimization_threads = cls.convert_max_optimization_threads( model.max_optimization_threads ) return rest.OptimizersConfigDiff( default_segment_number=( model.default_segment_number if model.HasField("default_segment_number") else None ), deleted_threshold=( model.deleted_threshold if model.HasField("deleted_threshold") else None ), flush_interval_sec=( model.flush_interval_sec if model.HasField("flush_interval_sec") else None ), indexing_threshold=( model.indexing_threshold if model.HasField("indexing_threshold") else None ), max_optimization_threads=max_optimization_threads, max_segment_size=( model.max_segment_size if model.HasField("max_segment_size") else None ), memmap_threshold=( model.memmap_threshold if model.HasField("memmap_threshold") else None ), vacuum_min_vector_number=( model.vacuum_min_vector_number if model.HasField("vacuum_min_vector_number") else None ), )
[docs] @classmethod def convert_update_collection(cls, model: grpc.UpdateCollection) -> rest.UpdateCollection: return rest.UpdateCollection( vectors=( cls.convert_vectors_config_diff(model.vectors_config) if model.HasField("vectors_config") else None ), optimizers_config=( cls.convert_optimizers_config_diff(model.optimizers_config) if model.HasField("optimizers_config") else None ), params=( cls.convert_collection_params_diff(model.params) if model.HasField("params") else None ), hnsw_config=( cls.convert_hnsw_config_diff(model.hnsw_config) if model.HasField("hnsw_config") else None ), quantization_config=( cls.convert_quantization_config_diff(model.quantization_config) if model.HasField("quantization_config") else None ), )
[docs] @classmethod def convert_geo_point(cls, model: grpc.GeoPoint) -> rest.GeoPoint: return rest.GeoPoint( lat=model.lat, lon=model.lon, )
[docs] @classmethod def convert_alias_operations(cls, model: grpc.AliasOperations) -> rest.AliasOperations: name = model.WhichOneof("action") if name is None: raise ValueError(f"invalid AliasOperations model: {model}") # pragma: no cover val = getattr(model, name) if name == "rename_alias": return rest.RenameAliasOperation(rename_alias=cls.convert_rename_alias(val)) if name == "create_alias": return rest.CreateAliasOperation(create_alias=cls.convert_create_alias(val)) if name == "delete_alias": return rest.DeleteAliasOperation(delete_alias=cls.convert_delete_alias(val)) raise ValueError(f"invalid AliasOperations model: {model}") # pragma: no cover
[docs] @classmethod def convert_alias_description(cls, model: grpc.AliasDescription) -> rest.AliasDescription: return rest.AliasDescription( alias_name=model.alias_name, collection_name=model.collection_name, )
[docs] @classmethod def convert_points_selector( cls, model: grpc.PointsSelector, shard_key_selector: Optional[grpc.ShardKeySelector] = None ) -> rest.PointsSelector: name = model.WhichOneof("points_selector_one_of") if name is None: raise ValueError(f"invalid PointsSelector model: {model}") # pragma: no cover val = getattr(model, name) if name == "points": return rest.PointIdsList( points=[cls.convert_point_id(point) for point in val.ids], shard_key=shard_key_selector, ) if name == "filter": return rest.FilterSelector( filter=cls.convert_filter(val), shard_key=shard_key_selector, ) raise ValueError(f"invalid PointsSelector model: {model}") # pragma: no cover
[docs] @classmethod def convert_with_payload_selector( cls, model: grpc.WithPayloadSelector ) -> rest.WithPayloadInterface: name = model.WhichOneof("selector_options") if name is None: raise ValueError(f"invalid WithPayloadSelector model: {model}") # pragma: no cover val = getattr(model, name) if name == "enable": return val if name == "include": return list(val.fields) if name == "exclude": return rest.PayloadSelectorExclude(exclude=list(val.fields)) raise ValueError(f"invalid WithPayloadSelector model: {model}") # pragma: no cover
[docs] @classmethod def convert_with_payload_interface( cls, model: grpc.WithPayloadSelector ) -> rest.WithPayloadInterface: return cls.convert_with_payload_selector(model)
[docs] @classmethod def convert_retrieved_point(cls, model: grpc.RetrievedPoint) -> rest.Record: return rest.Record( id=cls.convert_point_id(model.id), payload=cls.convert_payload(model.payload), vector=cls.convert_vectors_output(model.vectors) if model.HasField("vectors") else None, shard_key=( cls.convert_shard_key(model.shard_key) if model.HasField("shard_key") else None ), order_value=( cls.convert_order_value(model.order_value) if model.HasField("order_value") else None ), )
[docs] @classmethod def convert_record(cls, model: grpc.RetrievedPoint) -> rest.Record: return cls.convert_retrieved_point(model)
[docs] @classmethod def convert_count_result(cls, model: grpc.CountResult) -> rest.CountResult: return rest.CountResult(count=model.count)
[docs] @classmethod def convert_snapshot_description( cls, model: grpc.SnapshotDescription ) -> rest.SnapshotDescription: return rest.SnapshotDescription( name=model.name, creation_time=( model.creation_time.ToDatetime().isoformat() if model.HasField("creation_time") else None ), size=model.size, )
[docs] @classmethod def convert_datatype(cls, model: grpc.Datatype) -> rest.Datatype: if model == grpc.Datatype.Float32: return rest.Datatype.FLOAT32 elif model == grpc.Datatype.Uint8: return rest.Datatype.UINT8 elif model == grpc.Datatype.Float16: return rest.Datatype.FLOAT16 else: raise ValueError(f"invalid Datatype model: {model}") # pragma: no cover
[docs] @classmethod def convert_vector_params(cls, model: grpc.VectorParams) -> rest.VectorParams: return rest.VectorParams( size=model.size, distance=cls.convert_distance(model.distance), hnsw_config=( cls.convert_hnsw_config_diff(model.hnsw_config) if model.HasField("hnsw_config") else None ), quantization_config=( cls.convert_quantization_config(model.quantization_config) if model.HasField("quantization_config") else None ), on_disk=model.on_disk if model.HasField("on_disk") else None, datatype=cls.convert_datatype(model.datatype) if model.HasField("datatype") else None, multivector_config=( cls.convert_multivector_config(model.multivector_config) if model.HasField("multivector_config") else None ), )
[docs] @classmethod def convert_multivector_config(cls, model: grpc.MultiVectorConfig) -> rest.MultiVectorConfig: return rest.MultiVectorConfig( comparator=cls.convert_multivector_comparator(model.comparator) )
[docs] @classmethod def convert_multivector_comparator( cls, model: grpc.MultiVectorComparator ) -> rest.MultiVectorComparator: if model == grpc.MultiVectorComparator.MaxSim: return rest.MultiVectorComparator.MAX_SIM raise ValueError(f"invalid MultiVectorComparator model: {model}") # pragma: no cover
[docs] @classmethod def convert_vectors_config(cls, model: grpc.VectorsConfig) -> rest.VectorsConfig: name = model.WhichOneof("config") if name is None: raise ValueError(f"invalid VectorsConfig model: {model}") # pragma: no cover val = getattr(model, name) if name == "params": return cls.convert_vector_params(val) if name == "params_map": return dict( (key, cls.convert_vector_params(vec_params)) for key, vec_params in val.map.items() ) raise ValueError(f"invalid VectorsConfig model: {model}") # pragma: no cover
@classmethod def _convert_vector( cls, model: Union[grpc.Vector, grpc.VectorOutput] ) -> tuple[ Optional[str], Union[ list[float], list[list[float]], rest.SparseVector, grpc.Document, grpc.Image, grpc.InferenceObject, ], ]: """Parse common parts of vector structs Args: model: Vector or VectorOutput Returns: Tuple of name and value, name is None if the struct was parsed and returned with the converted value, otherwise it's propagated for further processing along with the raw value """ name = model.WhichOneof("vector") if name is None: if model.HasField("indices"): return None, rest.SparseVector(indices=model.indices.data[:], values=model.data[:]) if model.HasField("vectors_count"): vectors_count = model.vectors_count vectors = model.data step = len(vectors) // vectors_count return None, [vectors[i : i + step] for i in range(0, len(vectors), step)] return None, model.data[:] val = getattr(model, name) if name == "dense": return None, cls.convert_dense_vector(val) if name == "sparse": return None, cls.convert_sparse_vector(val) if name == "multi_dense": return None, cls.convert_multi_dense_vector(val) return name, val
[docs] @classmethod def convert_vector( cls, model: grpc.Vector ) -> Union[ list[float], list[list[float]], rest.SparseVector, rest.Document, rest.Image, rest.InferenceObject, ]: name, val = cls._convert_vector(model) if name is None: return val if name == "document": return cls.convert_document(val) if name == "image": return cls.convert_image(val) if name == "object": return cls.convert_inference_object(val) raise ValueError(f"invalid Vector model: {model}") # pragma: no cover
[docs] @classmethod def convert_vector_output( cls, model: grpc.VectorOutput ) -> Union[list[float], list[list[float]], rest.SparseVector]: name, val = cls._convert_vector(model) if name is None: return val raise ValueError(f"invalid Vector model: {model}") # pragma: no cover
[docs] @classmethod def convert_named_vectors(cls, model: grpc.NamedVectors) -> dict[str, rest.Vector]: vectors = {} for name, vector in model.vectors.items(): vectors[name] = cls.convert_vector(vector) return vectors
[docs] @classmethod def convert_named_vectors_output( cls, model: grpc.NamedVectorsOutput ) -> dict[str, rest.VectorOutput]: vectors = {} for name, vector in model.vectors.items(): vectors[name] = cls.convert_vector_output(vector) return vectors
[docs] @classmethod def convert_vectors(cls, model: grpc.Vectors) -> rest.VectorStruct: name = model.WhichOneof("vectors_options") if name is None: raise ValueError(f"invalid Vectors model: {model}") # pragma: no cover val = getattr(model, name) if name == "vector": return cls.convert_vector(val) if name == "vectors": return cls.convert_named_vectors(val) raise ValueError(f"invalid Vectors model: {model}") # pragma: no cover
[docs] @classmethod def convert_vectors_output(cls, model: grpc.VectorsOutput) -> rest.VectorStructOutput: name = model.WhichOneof("vectors_options") if name is None: raise ValueError(f"invalid VectorsOutput model: {model}") # pragma: no cover val = getattr(model, name) if name == "vector": return cls.convert_vector_output(val) if name == "vectors": return cls.convert_named_vectors_output(val) raise ValueError(f"invalid VectorsOutput model: {model}") # pragma: no cover
[docs] @classmethod def convert_dense_vector(cls, model: grpc.DenseVector) -> list[float]: return model.data[:]
[docs] @classmethod def convert_sparse_vector(cls, model: grpc.SparseVector) -> rest.SparseVector: return rest.SparseVector(indices=model.indices[:], values=model.values[:])
[docs] @classmethod def convert_multi_dense_vector(cls, model: grpc.MultiDenseVector) -> list[list[float]]: return [cls.convert_dense_vector(vector) for vector in model.vectors]
[docs] @classmethod def convert_document(cls, model: grpc.Document) -> rest.Document: return rest.Document( text=model.text, model=model.model, options=grpc_to_payload(model.options), )
[docs] @classmethod def convert_image(cls, model: grpc.Image) -> rest.Image: return rest.Image( image=value_to_json(model.image), model=model.model, options=grpc_to_payload(model.options), )
[docs] @classmethod def convert_inference_object(cls, model: grpc.InferenceObject) -> rest.InferenceObject: return rest.InferenceObject( object=value_to_json(model.object), model=model.model, options=grpc_to_payload(model.options), )
[docs] @classmethod def convert_vector_input(cls, model: grpc.VectorInput) -> rest.VectorInput: name = model.WhichOneof("variant") if name is None: raise ValueError(f"invalid VectorInput model: {model}") # pragma: no cover val = getattr(model, name) if name == "id": return cls.convert_point_id(val) if name == "dense": return cls.convert_dense_vector(val) if name == "sparse": return cls.convert_sparse_vector(val) if name == "multi_dense": return cls.convert_multi_dense_vector(val) if name == "document": return cls.convert_document(val) if name == "image": return cls.convert_image(val) if name == "object": return cls.convert_inference_object(val) raise ValueError(f"invalid VectorInput model: {model}") # pragma: no cover
[docs] @classmethod def convert_recommend_input(cls, model: grpc.RecommendInput) -> rest.RecommendInput: return rest.RecommendInput( positive=[cls.convert_vector_input(vector) for vector in model.positive], negative=[cls.convert_vector_input(vector) for vector in model.negative], strategy=cls.convert_recommend_strategy(model.strategy) if model.HasField("strategy") else None, )
[docs] @classmethod def convert_context_input_pair(cls, model: grpc.ContextInputPair) -> rest.ContextPair: return rest.ContextPair( positive=cls.convert_vector_input(model.positive), negative=cls.convert_vector_input(model.negative), )
[docs] @classmethod def convert_context_input(cls, model: grpc.ContextInput) -> rest.ContextInput: return [cls.convert_context_input_pair(pair) for pair in model.pairs]
[docs] @classmethod def convert_discover_input(cls, model: grpc.DiscoverInput) -> rest.DiscoverInput: return rest.DiscoverInput( target=cls.convert_vector_input(model.target), context=cls.convert_context_input(model.context), )
[docs] @classmethod def convert_fusion(cls, model: grpc.Fusion) -> rest.Fusion: if model == grpc.Fusion.RRF: return rest.Fusion.RRF if model == grpc.Fusion.DBSF: return rest.Fusion.DBSF raise ValueError(f"invalid Fusion model: {model}") # pragma: no cover
[docs] @classmethod def convert_sample(cls, model: grpc.Sample) -> rest.Sample: if model == grpc.Sample.Random: return rest.Sample.RANDOM raise ValueError(f"invalid Sample model: {model}") # pragma: no cover
[docs] @classmethod def convert_query(cls, model: grpc.Query) -> rest.Query: name = model.WhichOneof("variant") if name is None: raise ValueError(f"invalid Query model: {model}") # pragma: no cover val = getattr(model, name) if name == "nearest": return rest.NearestQuery(nearest=cls.convert_vector_input(val)) if name == "recommend": return rest.RecommendQuery(recommend=cls.convert_recommend_input(val)) if name == "discover": return rest.DiscoverQuery(discover=cls.convert_discover_input(val)) if name == "context": return rest.ContextQuery(context=cls.convert_context_input(val)) if name == "order_by": return rest.OrderByQuery(order_by=cls.convert_order_by(val)) if name == "fusion": return rest.FusionQuery(fusion=cls.convert_fusion(val)) if name == "sample": return rest.SampleQuery(sample=cls.convert_sample(val)) raise ValueError(f"invalid Query model: {model}") # pragma: no cover
[docs] @classmethod def convert_prefetch_query(cls, model: grpc.PrefetchQuery) -> rest.Prefetch: return rest.Prefetch( prefetch=[cls.convert_prefetch_query(prefetch) for prefetch in model.prefetch] if len(model.prefetch) != 0 else None, query=cls.convert_query(model.query) if model.HasField("query") else None, using=model.using if model.HasField("using") else None, filter=cls.convert_filter(model.filter) if model.HasField("filter") else None, params=cls.convert_search_params(model.params) if model.HasField("params") else None, score_threshold=model.score_threshold if model.HasField("score_threshold") else None, limit=model.limit if model.HasField("limit") else None, lookup_from=cls.convert_lookup_location(model.lookup_from) if model.HasField("lookup_from") else None, )
[docs] @classmethod def convert_vectors_selector(cls, model: grpc.VectorsSelector) -> list[str]: return model.names[:]
[docs] @classmethod def convert_with_vectors_selector(cls, model: grpc.WithVectorsSelector) -> rest.WithVector: name = model.WhichOneof("selector_options") if name is None: raise ValueError(f"invalid WithVectorsSelector model: {model}") # pragma: no cover val = getattr(model, name) if name == "enable": return val if name == "include": return cls.convert_vectors_selector(val) raise ValueError(f"invalid WithVectorsSelector model: {model}") # pragma: no cover
[docs] @classmethod def convert_search_points(cls, model: grpc.SearchPoints) -> rest.SearchRequest: vector = ( rest.NamedVector(name=model.vector_name, vector=model.vector[:]) if not model.HasField("sparse_indices") else ( rest.NamedSparseVector( name=model.vector_name, vector=rest.SparseVector( indices=model.sparse_indices.data[:], values=model.vector[:] ), ) ) ) return rest.SearchRequest( vector=vector, filter=cls.convert_filter(model.filter) if model.HasField("filter") else None, limit=model.limit, with_payload=( cls.convert_with_payload_interface(model.with_payload) if model.HasField("with_payload") else None ), params=cls.convert_search_params(model.params) if model.HasField("params") else None, score_threshold=model.score_threshold if model.HasField("score_threshold") else None, offset=model.offset if model.HasField("offset") else None, with_vector=( cls.convert_with_vectors_selector(model.with_vectors) if model.HasField("with_vectors") else None ), shard_key=( cls.convert_shard_key_selector(model.shard_key_selector) if model.HasField("shard_key_selector") else None ), )
[docs] @classmethod def convert_query_points(cls, model: grpc.QueryPoints) -> rest.QueryRequest: return rest.QueryRequest( shard_key=( cls.convert_shard_key_selector(model.shard_key_selector) if model.HasField("shard_key_selector") else None ), prefetch=[cls.convert_prefetch_query(prefetch) for prefetch in model.prefetch] if len(model.prefetch) != 0 else None, query=cls.convert_query(model.query) if model.HasField("query") else None, using=model.using if model.HasField("using") else None, filter=cls.convert_filter(model.filter) if model.HasField("filter") else None, params=cls.convert_search_params(model.params) if model.HasField("params") else None, score_threshold=model.score_threshold if model.HasField("score_threshold") else None, limit=model.limit if model.HasField("limit") else None, offset=model.offset if model.HasField("offset") else None, with_vector=( cls.convert_with_vectors_selector(model.with_vectors) if model.HasField("with_vectors") else None ), with_payload=( cls.convert_with_payload_interface(model.with_payload) if model.HasField("with_payload") else None ), lookup_from=( cls.convert_lookup_location(model.lookup_from) if model.HasField("lookup_from") else None ), )
[docs] @classmethod def convert_recommend_points(cls, model: grpc.RecommendPoints) -> rest.RecommendRequest: positive_ids = [cls.convert_point_id(point_id) for point_id in model.positive] negative_ids = [cls.convert_point_id(point_id) for point_id in model.negative] positive_vectors = [cls.convert_vector(vector) for vector in model.positive_vectors] negative_vectors = [cls.convert_vector(vector) for vector in model.negative_vectors] return rest.RecommendRequest( positive=positive_ids + positive_vectors, negative=negative_ids + negative_vectors, filter=cls.convert_filter(model.filter) if model.HasField("filter") else None, limit=model.limit, with_payload=( cls.convert_with_payload_interface(model.with_payload) if model.HasField("with_payload") else None ), params=cls.convert_search_params(model.params) if model.HasField("params") else None, score_threshold=model.score_threshold if model.HasField("score_threshold") else None, offset=model.offset if model.HasField("offset") else None, with_vector=( cls.convert_with_vectors_selector(model.with_vectors) if model.HasField("with_vectors") else None ), using=model.using, lookup_from=( cls.convert_lookup_location(model.lookup_from) if model.HasField("lookup_from") else None ), strategy=( cls.convert_recommend_strategy(model.strategy) if model.HasField("strategy") else None ), shard_key=( cls.convert_shard_key_selector(model.shard_key_selector) if model.HasField("shard_key_selector") else None ), )
[docs] @classmethod def convert_discover_points(cls, model: grpc.DiscoverPoints) -> rest.DiscoverRequest: target = cls.convert_target_vector(model.target) if model.HasField("target") else None context = [cls.convert_context_example_pair(pair) for pair in model.context] return rest.DiscoverRequest( target=target, context=context, filter=cls.convert_filter(model.filter) if model.HasField("filter") else None, limit=model.limit, with_payload=( cls.convert_with_payload_interface(model.with_payload) if model.HasField("with_payload") else None ), params=cls.convert_search_params(model.params) if model.HasField("params") else None, offset=model.offset if model.HasField("offset") else None, with_vector=( cls.convert_with_vectors_selector(model.with_vectors) if model.HasField("with_vectors") else None ), using=model.using, lookup_from=( cls.convert_lookup_location(model.lookup_from) if model.HasField("lookup_from") else None ), shard_key=( cls.convert_shard_key_selector(model.shard_key_selector) if model.HasField("shard_key_selector") else None ), )
[docs] @classmethod def convert_vector_example(cls, model: grpc.VectorExample) -> rest.RecommendExample: if model.HasField("vector"): return cls.convert_vector(model.vector) if model.HasField("id"): return cls.convert_point_id(model.id) raise ValueError(f"invalid VectorExample model: {model}") # pragma: no cover
[docs] @classmethod def convert_target_vector(cls, model: grpc.TargetVector) -> rest.RecommendExample: if model.HasField("single"): return cls.convert_vector_example(model.single) raise ValueError(f"invalid TargetVector model: {model}") # pragma: no cover
[docs] @classmethod def convert_context_example_pair( cls, model: grpc.ContextExamplePair ) -> rest.ContextExamplePair: return rest.ContextExamplePair( positive=cls.convert_vector_example(model.positive), negative=cls.convert_vector_example(model.negative), )
[docs] @classmethod def convert_tokenizer_type(cls, model: grpc.TokenizerType) -> rest.TokenizerType: if model == grpc.Prefix: return rest.TokenizerType.PREFIX if model == grpc.Whitespace: return rest.TokenizerType.WHITESPACE if model == grpc.Word: return rest.TokenizerType.WORD if model == grpc.Multilingual: return rest.TokenizerType.MULTILINGUAL raise ValueError(f"invalid TokenizerType model: {model}") # pragma: no cover
[docs] @classmethod def convert_text_index_params(cls, model: grpc.TextIndexParams) -> rest.TextIndexParams: return rest.TextIndexParams( type="text", tokenizer=cls.convert_tokenizer_type(model.tokenizer), min_token_len=model.min_token_len if model.HasField("min_token_len") else None, max_token_len=model.max_token_len if model.HasField("max_token_len") else None, lowercase=model.lowercase if model.HasField("lowercase") else None, )
[docs] @classmethod def convert_integer_index_params( cls, model: grpc.IntegerIndexParams ) -> rest.IntegerIndexParams: return rest.IntegerIndexParams( type=rest.IntegerIndexType.INTEGER, range=model.range, lookup=model.lookup, is_principal=model.is_principal if model.HasField("is_principal") else None, on_disk=model.on_disk if model.HasField("on_disk") else None, )
[docs] @classmethod def convert_keyword_index_params( cls, model: grpc.KeywordIndexParams ) -> rest.KeywordIndexParams: return rest.KeywordIndexParams( type=rest.KeywordIndexType.KEYWORD, is_tenant=model.is_tenant if model.HasField("is_tenant") else None, on_disk=model.on_disk if model.HasField("on_disk") else None, )
[docs] @classmethod def convert_float_index_params(cls, model: grpc.FloatIndexParams) -> rest.FloatIndexParams: return rest.FloatIndexParams( type=rest.FloatIndexType.FLOAT, is_principal=model.is_principal if model.HasField("is_principal") else None, on_disk=model.on_disk if model.HasField("on_disk") else None, )
[docs] @classmethod def convert_geo_index_params(cls, model: grpc.GeoIndexParams) -> rest.GeoIndexParams: return rest.GeoIndexParams( type=rest.GeoIndexType.GEO, on_disk=model.on_disk if model.HasField("on_disk") else None, )
[docs] @classmethod def convert_bool_index_params(cls, model: grpc.BoolIndexParams) -> rest.BoolIndexParams: return rest.BoolIndexParams( type=rest.BoolIndexType.BOOL, on_disk=model.on_disk if model.HasField("on_disk") else None, )
[docs] @classmethod def convert_datetime_index_params( cls, model: grpc.DatetimeIndexParams ) -> rest.DatetimeIndexParams: return rest.DatetimeIndexParams( type=rest.DatetimeIndexType.DATETIME, is_principal=model.is_principal if model.HasField("is_principal") else None, on_disk=model.on_disk if model.HasField("on_disk") else None, )
[docs] @classmethod def convert_uuid_index_params(cls, model: grpc.UuidIndexParams) -> rest.UuidIndexParams: return rest.UuidIndexParams( type=rest.UuidIndexType.UUID, is_tenant=model.is_tenant if model.HasField("is_tenant") else None, on_disk=model.on_disk if model.HasField("on_disk") else None, )
[docs] @classmethod def convert_collection_params_diff( cls, model: grpc.CollectionParamsDiff ) -> rest.CollectionParamsDiff: return rest.CollectionParamsDiff( replication_factor=( model.replication_factor if model.HasField("replication_factor") else None ), write_consistency_factor=( model.write_consistency_factor if model.HasField("write_consistency_factor") else None ), read_fan_out_factor=( model.read_fan_out_factor if model.HasField("read_fan_out_factor") else None ), on_disk_payload=model.on_disk_payload if model.HasField("on_disk_payload") else None, )
[docs] @classmethod def convert_lookup_location(cls, model: grpc.LookupLocation) -> rest.LookupLocation: return rest.LookupLocation( collection=model.collection_name, vector=model.vector_name if model.HasField("vector_name") else None, )
[docs] @classmethod def convert_write_ordering(cls, model: grpc.WriteOrdering) -> rest.WriteOrdering: if model.type == grpc.WriteOrderingType.Weak: return rest.WriteOrdering.WEAK if model.type == grpc.WriteOrderingType.Medium: return rest.WriteOrdering.MEDIUM if model.type == grpc.WriteOrderingType.Strong: return rest.WriteOrdering.STRONG raise ValueError(f"invalid WriteOrdering model: {model}") # pragma: no cover
[docs] @classmethod def convert_read_consistency(cls, model: grpc.ReadConsistency) -> rest.ReadConsistency: name = model.WhichOneof("value") if name is None: raise ValueError(f"invalid ReadConsistency model: {model}") # pragma: no cover val = getattr(model, name) if name == "factor": return val if name == "type": return cls.convert_read_consistency_type(val) raise ValueError(f"invalid ReadConsistency model: {model}") # pragma: no cover
[docs] @classmethod def convert_read_consistency_type( cls, model: grpc.ReadConsistencyType ) -> rest.ReadConsistencyType: if model == grpc.All: return rest.ReadConsistencyType.ALL if model == grpc.Majority: return rest.ReadConsistencyType.MAJORITY if model == grpc.Quorum: return rest.ReadConsistencyType.QUORUM raise ValueError(f"invalid ReadConsistencyType model: {model}") # pragma: no cover
[docs] @classmethod def convert_scalar_quantization_config( cls, model: grpc.ScalarQuantization ) -> rest.ScalarQuantizationConfig: return rest.ScalarQuantizationConfig( type=rest.ScalarType.INT8, quantile=model.quantile if model.HasField("quantile") else None, always_ram=model.always_ram if model.HasField("always_ram") else None, )
[docs] @classmethod def convert_product_quantization_config( cls, model: grpc.ProductQuantization ) -> rest.ProductQuantizationConfig: return rest.ProductQuantizationConfig( compression=cls.convert_compression_ratio(model.compression), always_ram=model.always_ram if model.HasField("always_ram") else None, )
[docs] @classmethod def convert_binary_quantization_config( cls, model: grpc.BinaryQuantization ) -> rest.BinaryQuantizationConfig: return rest.BinaryQuantizationConfig( always_ram=model.always_ram if model.HasField("always_ram") else None, )
[docs] @classmethod def convert_compression_ratio(cls, model: grpc.CompressionRatio) -> rest.CompressionRatio: if model == grpc.x4: return rest.CompressionRatio.X4 if model == grpc.x8: return rest.CompressionRatio.X8 if model == grpc.x16: return rest.CompressionRatio.X16 if model == grpc.x32: return rest.CompressionRatio.X32 if model == grpc.x64: return rest.CompressionRatio.X64 raise ValueError(f"invalid CompressionRatio model: {model}") # pragma: no cover
[docs] @classmethod def convert_quantization_config( cls, model: grpc.QuantizationConfig ) -> rest.QuantizationConfig: name = model.WhichOneof("quantization") if name is None: raise ValueError(f"invalid QuantizationConfig model: {model}") # pragma: no cover val = getattr(model, name) if name == "scalar": return rest.ScalarQuantization(scalar=cls.convert_scalar_quantization_config(val)) if name == "product": return rest.ProductQuantization(product=cls.convert_product_quantization_config(val)) if name == "binary": return rest.BinaryQuantization(binary=cls.convert_binary_quantization_config(val)) raise ValueError(f"invalid QuantizationConfig model: {model}") # pragma: no cover
[docs] @classmethod def convert_quantization_search_params( cls, model: grpc.QuantizationSearchParams ) -> rest.QuantizationSearchParams: return rest.QuantizationSearchParams( ignore=model.ignore if model.HasField("ignore") else None, rescore=model.rescore if model.HasField("rescore") else None, oversampling=model.oversampling if model.HasField("oversampling") else None, )
[docs] @classmethod def convert_point_vectors(cls, model: grpc.PointVectors) -> rest.PointVectors: return rest.PointVectors( id=cls.convert_point_id(model.id), vector=cls.convert_vectors(model.vectors), )
[docs] @classmethod def convert_groups_result(cls, model: grpc.GroupsResult) -> rest.GroupsResult: return rest.GroupsResult( groups=[cls.convert_point_group(group) for group in model.groups], )
[docs] @classmethod def convert_point_group(cls, model: grpc.PointGroup) -> rest.PointGroup: return rest.PointGroup( id=cls.convert_group_id(model.id), hits=[cls.convert_scored_point(hit) for hit in model.hits], lookup=cls.convert_record(model.lookup) if model.HasField("lookup") else None, )
[docs] @classmethod def convert_group_id(cls, model: grpc.GroupId) -> rest.GroupId: name = model.WhichOneof("kind") if name is None: raise ValueError(f"invalid GroupId model: {model}") # pragma: no cover val = getattr(model, name) return val
[docs] @classmethod def convert_with_lookup(cls, model: grpc.WithLookup) -> rest.WithLookup: return rest.WithLookup( collection=model.collection, with_payload=( cls.convert_with_payload_selector(model.with_payload) if model.HasField("with_payload") else None ), with_vectors=( cls.convert_with_vectors_selector(model.with_vectors) if model.HasField("with_vectors") else None ), )
[docs] @classmethod def convert_quantization_config_diff( cls, model: grpc.QuantizationConfigDiff ) -> rest.QuantizationConfigDiff: name = model.WhichOneof("quantization") if name is None: raise ValueError(f"invalid QuantizationConfigDiff model: {model}") # pragma: no cover val = getattr(model, name) if name == "scalar": return rest.ScalarQuantization(scalar=cls.convert_scalar_quantization_config(val)) if name == "product": return rest.ProductQuantization(product=cls.convert_product_quantization_config(val)) if name == "binary": return rest.BinaryQuantization(binary=cls.convert_binary_quantization_config(val)) if name == "disabled": return rest.Disabled.DISABLED raise ValueError(f"invalid QuantizationConfigDiff model: {model}") # pragma: no cover
[docs] @classmethod def convert_vector_params_diff(cls, model: grpc.VectorParamsDiff) -> rest.VectorParamsDiff: return rest.VectorParamsDiff( hnsw_config=( cls.convert_hnsw_config_diff(model.hnsw_config) if model.HasField("hnsw_config") else None ), quantization_config=( cls.convert_quantization_config_diff(model.quantization_config) if model.HasField("quantization_config") else None ), on_disk=model.on_disk if model.HasField("on_disk") else None, )
[docs] @classmethod def convert_vectors_config_diff(cls, model: grpc.VectorsConfigDiff) -> rest.VectorsConfigDiff: name = model.WhichOneof("config") if name is None: raise ValueError(f"invalid VectorsConfigDiff model: {model}") # pragma: no cover val = getattr(model, name) if name == "params": return {"": cls.convert_vector_params_diff(val)} if name == "params_map": return dict( (key, cls.convert_vector_params_diff(vec_params)) for key, vec_params in val.map.items() ) raise ValueError(f"invalid VectorsConfigDiff model: {model}") # pragma: no cover
[docs] @classmethod def convert_points_update_operation( cls, model: grpc.PointsUpdateOperation ) -> rest.UpdateOperation: name = model.WhichOneof("operation") if name is None: raise ValueError(f"invalid PointsUpdateOperation model: {model}") # pragma: no cover val = getattr(model, name) if name == "upsert": shard_key_selector = ( cls.convert_shard_key(val.shard_key_selector) if val.HasField("shard_key_selector") else None ) return rest.UpsertOperation( upsert=rest.PointsList( points=[cls.convert_point_struct(point) for point in val.points], shard_key=shard_key_selector, ) ) elif name == "delete_points": shard_key_selector = ( val.shard_key_selector if val.HasField("shard_key_selector") else None ) points_selector = cls.convert_points_selector( val.points, shard_key_selector=shard_key_selector ) return rest.DeleteOperation(delete=points_selector) elif name == "set_payload": shard_key_selector = ( val.shard_key_selector if val.HasField("shard_key_selector") else None ) points_selector = cls.convert_points_selector( val.points_selector, shard_key_selector=shard_key_selector ) points = None filter_ = None if isinstance(points_selector, rest.PointIdsList): points = points_selector.points elif isinstance(points_selector, rest.FilterSelector): filter_ = points_selector.filter else: raise ValueError( f"invalid PointsSelector model: {points_selector}" ) # pragma: no cover return rest.SetPayloadOperation( set_payload=rest.SetPayload( payload=cls.convert_payload(val.payload), points=points, filter=filter_, ) ) elif name == "overwrite_payload": shard_key_selector = ( val.shard_key_selector if val.HasField("shard_key_selector") else None ) points_selector = cls.convert_points_selector( val.points_selector, shard_key_selector=shard_key_selector ) points = None filter_ = None if isinstance(points_selector, rest.PointIdsList): points = points_selector.points elif isinstance(points_selector, rest.FilterSelector): filter_ = points_selector.filter else: raise ValueError( f"invalid PointsSelector model: {points_selector}" ) # pragma: no cover return rest.OverwritePayloadOperation( overwrite_payload=rest.SetPayload( payload=cls.convert_payload(val.payload), points=points, filter=filter_, ) ) elif name == "delete_payload": shard_key_selector = ( val.shard_key_selector if val.HasField("shard_key_selector") else None ) points_selector = cls.convert_points_selector( val.points_selector, shard_key_selector=shard_key_selector ) points = None filter_ = None if isinstance(points_selector, rest.PointIdsList): points = points_selector.points elif isinstance(points_selector, rest.FilterSelector): filter_ = points_selector.filter else: raise ValueError( f"invalid PointsSelector model: {points_selector}" ) # pragma: no cover return rest.DeletePayloadOperation( delete_payload=rest.DeletePayload( keys=[key for key in val.keys], points=points, filter=filter_, ) ) elif name == "clear_payload": shard_key_selector = ( val.shard_key_selector if val.HasField("shard_key_selector") else None ) points_selector = cls.convert_points_selector( val.points, shard_key_selector=shard_key_selector ) return rest.ClearPayloadOperation(clear_payload=points_selector) elif name == "update_vectors": shard_key_selector = ( cls.convert_shard_key(val.shard_key_selector) if val.HasField("shard_key_selector") else None ) return rest.UpdateVectorsOperation( update_vectors=rest.UpdateVectors( points=[cls.convert_point_vectors(point) for point in val.points], shard_key=shard_key_selector, ) ) elif name == "delete_vectors": shard_key_selector = ( val.shard_key_selector if val.HasField("shard_key_selector") else None ) points_selector = cls.convert_points_selector( val.points_selector, shard_key_selector=shard_key_selector ) points = None filter_ = None if isinstance(points_selector, rest.PointIdsList): points = points_selector.points elif isinstance(points_selector, rest.FilterSelector): filter_ = points_selector.filter else: raise ValueError( f"invalid PointsSelector model: {points_selector}" ) # pragma: no cover return rest.DeleteVectorsOperation( delete_vectors=rest.DeleteVectors( vector=[name for name in val.vectors.names], points=points, filter=filter_, ) ) else: raise ValueError(f"invalid UpdateOperation model: {model}") # pragma: no cover
[docs] @classmethod def convert_init_from(cls, model: str) -> rest.InitFrom: if isinstance(model, str): return rest.InitFrom(collection=model) raise ValueError(f"Invalid InitFrom model: {model}") # pragma: no cover
[docs] @classmethod def convert_recommend_strategy(cls, model: grpc.RecommendStrategy) -> rest.RecommendStrategy: if model == grpc.RecommendStrategy.AverageVector: return rest.RecommendStrategy.AVERAGE_VECTOR if model == grpc.RecommendStrategy.BestScore: return rest.RecommendStrategy.BEST_SCORE raise ValueError(f"invalid RecommendStrategy model: {model}") # pragma: no cover
[docs] @classmethod def convert_sparse_index_config(cls, model: grpc.SparseIndexConfig) -> rest.SparseIndexParams: return rest.SparseIndexParams( full_scan_threshold=( model.full_scan_threshold if model.HasField("full_scan_threshold") else None ), on_disk=model.on_disk if model.HasField("on_disk") else None, datatype=cls.convert_datatype(model.datatype) if model.HasField("datatype") else None, )
[docs] @classmethod def convert_modifier(cls, model: grpc.Modifier) -> rest.Modifier: if model == grpc.Modifier.Idf: return rest.Modifier.IDF if model == getattr(grpc.Modifier, "None"): return rest.Modifier.NONE raise ValueError(f"invalid Modifier model: {model}") # pragma: no cover
[docs] @classmethod def convert_sparse_vector_params( cls, model: grpc.SparseVectorParams ) -> rest.SparseVectorParams: return rest.SparseVectorParams( index=( cls.convert_sparse_index_config(model.index) if model.HasField("index") is not None else None ), modifier=( cls.convert_modifier(model.modifier) if model.HasField("modifier") else None ), )
[docs] @classmethod def convert_sparse_vector_config( cls, model: grpc.SparseVectorConfig ) -> dict[str, rest.SparseVectorParams]: return dict((key, cls.convert_sparse_vector_params(val)) for key, val in model.map.items())
[docs] @classmethod def convert_shard_key(cls, model: grpc.ShardKey) -> rest.ShardKey: name = model.WhichOneof("key") if name is None: raise ValueError(f"invalid ShardKey model: {model}") # pragma: no cover val = getattr(model, name) return val
[docs] @classmethod def convert_shard_key_selector(cls, model: grpc.ShardKeySelector) -> rest.ShardKeySelector: if len(model.shard_keys) == 1: return cls.convert_shard_key(model.shard_keys[0]) return [cls.convert_shard_key(shard_key) for shard_key in model.shard_keys]
[docs] @classmethod def convert_sharding_method(cls, model: grpc.ShardingMethod) -> rest.ShardingMethod: if model == grpc.Auto: return rest.ShardingMethod.AUTO if model == grpc.Custom: return rest.ShardingMethod.CUSTOM raise ValueError(f"invalid ShardingMethod model: {model}") # pragma: no cover
[docs] @classmethod def convert_direction(cls, model: grpc.Direction) -> rest.Direction: if model == grpc.Asc: return rest.Direction.ASC if model == grpc.Desc: return rest.Direction.DESC raise ValueError(f"invalid Direction model: {model}") # pragma: no cover
[docs] @classmethod def convert_start_from(cls, model: grpc.StartFrom) -> rest.StartFrom: if model.HasField("integer"): return model.integer if model.HasField("float"): return model.float if model.HasField("timestamp"): dt = cls.convert_timestamp(model.timestamp) return dt if model.HasField("datetime"): return model.datetime
[docs] @classmethod def convert_order_by(cls, model: grpc.OrderBy) -> rest.OrderBy: return rest.OrderBy( key=model.key, direction=( cls.convert_direction(model.direction) if model.HasField("direction") else None ), start_from=( cls.convert_start_from(model.start_from) if model.HasField("start_from") else None ), )
[docs] @classmethod def convert_facet_value(cls, model: grpc.FacetValue) -> rest.FacetValue: name = model.WhichOneof("variant") if name is None: raise ValueError(f"invalid FacetValue model: {model}") # pragma: no cover val = getattr(model, name) return val
[docs] @classmethod def convert_facet_value_hit(cls, model: grpc.FacetHit) -> rest.FacetValueHit: return rest.FacetValueHit( value=cls.convert_facet_value(model.value), count=model.count, )
[docs] @classmethod def convert_health_check_reply(cls, model: grpc.HealthCheckReply) -> rest.VersionInfo: return rest.VersionInfo( title=model.title, version=model.version, commit=model.commit if model.HasField("commit") else None, )
[docs] @classmethod def convert_search_matrix_pair(cls, model: grpc.SearchMatrixPair) -> rest.SearchMatrixPair: return rest.SearchMatrixPair( a=cls.convert_point_id(model.a), b=cls.convert_point_id(model.b), score=model.score, )
[docs] @classmethod def convert_search_matrix_pairs( cls, model: grpc.SearchMatrixPairs ) -> rest.SearchMatrixPairsResponse: return rest.SearchMatrixPairsResponse( pairs=[cls.convert_search_matrix_pair(pair) for pair in model.pairs], )
[docs] @classmethod def convert_search_matrix_offsets( cls, model: grpc.SearchMatrixOffsets ) -> rest.SearchMatrixOffsetsResponse: return rest.SearchMatrixOffsetsResponse( offsets_row=list(model.offsets_row), offsets_col=list(model.offsets_col), scores=list(model.scores), ids=[cls.convert_point_id(p_id) for p_id in model.ids], )
[docs] @classmethod def convert_strict_mode_config(cls, model: grpc.StrictModeConfig) -> rest.StrictModeConfig: return rest.StrictModeConfig( enabled=model.enabled if model.HasField("enabled") else None, max_query_limit=model.max_query_limit if model.HasField("max_query_limit") else None, max_timeout=model.max_timeout if model.HasField("max_timeout") else None, unindexed_filtering_retrieve=model.unindexed_filtering_retrieve if model.HasField("unindexed_filtering_retrieve") else None, unindexed_filtering_update=model.unindexed_filtering_update if model.HasField("unindexed_filtering_update") else None, search_max_hnsw_ef=model.search_max_hnsw_ef if model.HasField("search_max_hnsw_ef") else None, search_allow_exact=model.search_allow_exact if model.HasField("search_allow_exact") else None, search_max_oversampling=model.search_max_oversampling if model.HasField("search_max_oversampling") else None, upsert_max_batchsize=model.upsert_max_batchsize if model.HasField("upsert_max_batchsize") else None, max_collection_vector_size_bytes=model.max_collection_vector_size_bytes if model.HasField("max_collection_vector_size_bytes") else None, read_rate_limit=model.read_rate_limit if model.HasField("read_rate_limit") else None, write_rate_limit=model.write_rate_limit if model.HasField("write_rate_limit") else None, max_collection_payload_size_bytes=model.max_collection_payload_size_bytes if model.HasField("max_collection_payload_size_bytes") else None, filter_max_conditions=model.filter_max_conditions if model.HasField("filter_max_conditions") else None, condition_max_size=model.condition_max_size if model.HasField("condition_max_size") else None, )
# ---------------------------------------- # # ----------- REST TO gRPC --------------- # # ----------------------------------------
[docs]class RestToGrpc:
[docs] @classmethod def convert_filter(cls, model: rest.Filter) -> grpc.Filter: def convert_conditions( conditions: Union[list[rest.Condition], rest.Condition], ) -> list[grpc.Condition]: if not isinstance(conditions, list): conditions = [conditions] return [cls.convert_condition(condition) for condition in conditions] return grpc.Filter( must=(convert_conditions(model.must) if model.must is not None else None), must_not=(convert_conditions(model.must_not) if model.must_not is not None else None), should=(convert_conditions(model.should) if model.should is not None else None), min_should=( grpc.MinShould( conditions=convert_conditions(model.min_should.conditions), min_count=model.min_should.min_count, ) if model.min_should is not None else None ), )
[docs] @classmethod def convert_range(cls, model: rest.Range) -> grpc.Range: return grpc.Range( lt=model.lt, gt=model.gt, gte=model.gte, lte=model.lte, )
[docs] @classmethod def convert_datetime(cls, model: Union[datetime, date]) -> Timestamp: if isinstance(model, date) and not isinstance(model, datetime): model = datetime.combine(model, datetime.min.time()) ts = Timestamp() ts.FromDatetime(model) return ts
[docs] @classmethod def convert_datetime_range(cls, model: rest.DatetimeRange) -> grpc.DatetimeRange: return grpc.DatetimeRange( lt=cls.convert_datetime(model.lt) if model.lt is not None else None, gt=cls.convert_datetime(model.gt) if model.gt is not None else None, gte=cls.convert_datetime(model.gte) if model.gte is not None else None, lte=cls.convert_datetime(model.lte) if model.lte is not None else None, )
[docs] @classmethod def convert_geo_radius(cls, model: rest.GeoRadius) -> grpc.GeoRadius: return grpc.GeoRadius(center=cls.convert_geo_point(model.center), radius=model.radius)
[docs] @classmethod def convert_collection_description( cls, model: rest.CollectionDescription ) -> grpc.CollectionDescription: return grpc.CollectionDescription(name=model.name)
[docs] @classmethod def convert_collection_info(cls, model: rest.CollectionInfo) -> grpc.CollectionInfo: return grpc.CollectionInfo( config=cls.convert_collection_config(model.config) if model.config else None, optimizer_status=cls.convert_optimizer_status(model.optimizer_status), payload_schema=( cls.convert_payload_schema(model.payload_schema) if model.payload_schema is not None else None ), segments_count=model.segments_count, status=cls.convert_collection_status(model.status), vectors_count=model.vectors_count if model.vectors_count is not None else None, points_count=model.points_count, )
[docs] @classmethod def convert_collection_status(cls, model: rest.CollectionStatus) -> grpc.CollectionStatus: if model == rest.CollectionStatus.RED: return grpc.CollectionStatus.Red if model == rest.CollectionStatus.YELLOW: return grpc.CollectionStatus.Yellow if model == rest.CollectionStatus.GREEN: return grpc.CollectionStatus.Green if model == rest.CollectionStatus.GREY: return grpc.CollectionStatus.Grey raise ValueError(f"invalid CollectionStatus model: {model}") # pragma: no cover
[docs] @classmethod def convert_optimizer_status(cls, model: rest.OptimizersStatus) -> grpc.OptimizerStatus: if isinstance(model, rest.OptimizersStatusOneOf): return grpc.OptimizerStatus( ok=True, ) if isinstance(model, rest.OptimizersStatusOneOf1): return grpc.OptimizerStatus(ok=False, error=model.error) raise ValueError(f"invalid OptimizersStatus model: {model}") # pragma: no cover
[docs] @classmethod def convert_payload_schema( cls, model: dict[str, rest.PayloadIndexInfo] ) -> dict[str, grpc.PayloadSchemaInfo]: return dict((key, cls.convert_payload_index_info(val)) for key, val in model.items())
[docs] @classmethod def convert_payload_index_info(cls, model: rest.PayloadIndexInfo) -> grpc.PayloadSchemaInfo: params = model.params return grpc.PayloadSchemaInfo( data_type=cls.convert_payload_schema_type(model.data_type), params=cls.convert_payload_schema_params(params) if params is not None else None, points=model.points, )
[docs] @classmethod def convert_payload_schema_params( cls, model: rest.PayloadSchemaParams ) -> grpc.PayloadIndexParams: if isinstance(model, rest.TextIndexParams): return grpc.PayloadIndexParams(text_index_params=cls.convert_text_index_params(model)) if isinstance(model, rest.IntegerIndexParams): return grpc.PayloadIndexParams( integer_index_params=cls.convert_integer_index_params(model) ) if isinstance(model, rest.KeywordIndexParams): return grpc.PayloadIndexParams( keyword_index_params=cls.convert_keyword_index_params(model) ) if isinstance(model, rest.FloatIndexParams): return grpc.PayloadIndexParams( float_index_params=cls.convert_float_index_params(model) ) if isinstance(model, rest.GeoIndexParams): return grpc.PayloadIndexParams(geo_index_params=cls.convert_geo_index_params(model)) if isinstance(model, rest.BoolIndexParams): return grpc.PayloadIndexParams(bool_index_params=cls.convert_bool_index_params(model)) if isinstance(model, rest.DatetimeIndexParams): return grpc.PayloadIndexParams( datetime_index_params=cls.convert_datetime_index_params(model) ) if isinstance(model, rest.UuidIndexParams): return grpc.PayloadIndexParams(uuid_index_params=cls.convert_uuid_index_params(model)) raise ValueError(f"invalid PayloadSchemaParams model: {model}") # pragma: no cover
[docs] @classmethod def convert_payload_schema_type(cls, model: rest.PayloadSchemaType) -> grpc.PayloadSchemaType: if model == rest.PayloadSchemaType.KEYWORD: return grpc.PayloadSchemaType.Keyword if model == rest.PayloadSchemaType.INTEGER: return grpc.PayloadSchemaType.Integer if model == rest.PayloadSchemaType.FLOAT: return grpc.PayloadSchemaType.Float if model == rest.PayloadSchemaType.BOOL: return grpc.PayloadSchemaType.Bool if model == rest.PayloadSchemaType.GEO: return grpc.PayloadSchemaType.Geo if model == rest.PayloadSchemaType.TEXT: return grpc.PayloadSchemaType.Text if model == rest.PayloadSchemaType.DATETIME: return grpc.PayloadSchemaType.Datetime if model == rest.PayloadSchemaType.UUID: return grpc.PayloadSchemaType.Uuid raise ValueError(f"invalid PayloadSchemaType model: {model}") # pragma: no cover
[docs] @classmethod def convert_update_result(cls, model: rest.UpdateResult) -> grpc.UpdateResult: return grpc.UpdateResult( operation_id=model.operation_id, status=cls.convert_update_stats(model.status), )
[docs] @classmethod def convert_update_stats(cls, model: rest.UpdateStatus) -> grpc.UpdateStatus: if model == rest.UpdateStatus.COMPLETED: return grpc.UpdateStatus.Completed if model == rest.UpdateStatus.ACKNOWLEDGED: return grpc.UpdateStatus.Acknowledged raise ValueError(f"invalid UpdateStatus model: {model}") # pragma: no cover
[docs] @classmethod def convert_has_id_condition(cls, model: rest.HasIdCondition) -> grpc.HasIdCondition: return grpc.HasIdCondition( has_id=[cls.convert_extended_point_id(idx) for idx in model.has_id] )
[docs] @classmethod def convert_has_vector_condition( cls, model: rest.HasVectorCondition ) -> grpc.HasVectorCondition: return grpc.HasVectorCondition(has_vector=model.has_vector)
[docs] @classmethod def convert_delete_alias(cls, model: rest.DeleteAlias) -> grpc.DeleteAlias: return grpc.DeleteAlias(alias_name=model.alias_name)
[docs] @classmethod def convert_rename_alias(cls, model: rest.RenameAlias) -> grpc.RenameAlias: return grpc.RenameAlias( old_alias_name=model.old_alias_name, new_alias_name=model.new_alias_name )
[docs] @classmethod def convert_is_empty_condition(cls, model: rest.IsEmptyCondition) -> grpc.IsEmptyCondition: return grpc.IsEmptyCondition(key=model.is_empty.key)
[docs] @classmethod def convert_is_null_condition(cls, model: rest.IsNullCondition) -> grpc.IsNullCondition: return grpc.IsNullCondition(key=model.is_null.key)
[docs] @classmethod def convert_nested_condition(cls, model: rest.NestedCondition) -> grpc.NestedCondition: return grpc.NestedCondition( key=model.nested.key, filter=cls.convert_filter(model.nested.filter), )
[docs] @classmethod def convert_search_params(cls, model: rest.SearchParams) -> grpc.SearchParams: return grpc.SearchParams( hnsw_ef=model.hnsw_ef, exact=model.exact, quantization=( cls.convert_quantization_search_params(model.quantization) if model.quantization is not None else None ), indexed_only=model.indexed_only, )
[docs] @classmethod def convert_create_alias(cls, model: rest.CreateAlias) -> grpc.CreateAlias: return grpc.CreateAlias(collection_name=model.collection_name, alias_name=model.alias_name)
[docs] @classmethod def convert_order_value(cls, model: rest.OrderValue) -> grpc.OrderValue: if isinstance(model, int): return grpc.OrderValue(int=model) if isinstance(model, float): return grpc.OrderValue(float=model) raise ValueError(f"invalid OrderValue model: {model}") # pragma: no cover
[docs] @classmethod def convert_scored_point(cls, model: rest.ScoredPoint) -> grpc.ScoredPoint: return grpc.ScoredPoint( id=cls.convert_extended_point_id(model.id), payload=cls.convert_payload(model.payload) if model.payload is not None else None, score=model.score, vectors=cls.convert_vector_struct_output(model.vector) if model.vector is not None else None, version=model.version, shard_key=cls.convert_shard_key(model.shard_key) if model.shard_key else None, order_value=cls.convert_order_value(model.order_value) if model.order_value else None, )
[docs] @classmethod def convert_values_count(cls, model: rest.ValuesCount) -> grpc.ValuesCount: return grpc.ValuesCount( lt=model.lt, gt=model.gt, gte=model.gte, lte=model.lte, )
[docs] @classmethod def convert_geo_bounding_box(cls, model: rest.GeoBoundingBox) -> grpc.GeoBoundingBox: return grpc.GeoBoundingBox( top_left=cls.convert_geo_point(model.top_left), bottom_right=cls.convert_geo_point(model.bottom_right), )
[docs] @classmethod def convert_point_struct(cls, model: rest.PointStruct) -> grpc.PointStruct: return grpc.PointStruct( id=cls.convert_extended_point_id(model.id), vectors=cls.convert_vector_struct(model.vector), payload=cls.convert_payload(model.payload) if model.payload is not None else None, )
[docs] @classmethod def convert_payload(cls, model: rest.Payload) -> dict[str, grpc.Value]: return dict((key, json_to_value(val)) for key, val in model.items())
[docs] @classmethod def convert_hnsw_config_diff(cls, model: rest.HnswConfigDiff) -> grpc.HnswConfigDiff: return grpc.HnswConfigDiff( ef_construct=model.ef_construct, full_scan_threshold=model.full_scan_threshold, m=model.m, max_indexing_threads=model.max_indexing_threads, on_disk=model.on_disk, payload_m=model.payload_m, )
[docs] @classmethod def convert_field_condition(cls, model: rest.FieldCondition) -> grpc.FieldCondition: if model.match: return grpc.FieldCondition(key=model.key, match=cls.convert_match(model.match)) if model.range: if isinstance(model.range, rest.Range): return grpc.FieldCondition(key=model.key, range=cls.convert_range(model.range)) if isinstance(model.range, rest.DatetimeRange): return grpc.FieldCondition( key=model.key, datetime_range=cls.convert_datetime_range(model.range) ) if model.geo_bounding_box: return grpc.FieldCondition( key=model.key, geo_bounding_box=cls.convert_geo_bounding_box(model.geo_bounding_box), ) if model.geo_radius: return grpc.FieldCondition( key=model.key, geo_radius=cls.convert_geo_radius(model.geo_radius) ) if model.values_count: return grpc.FieldCondition( key=model.key, values_count=cls.convert_values_count(model.values_count) ) raise ValueError(f"invalid FieldCondition model: {model}") # pragma: no cover
[docs] @classmethod def convert_wal_config_diff(cls, model: rest.WalConfigDiff) -> grpc.WalConfigDiff: return grpc.WalConfigDiff( wal_capacity_mb=model.wal_capacity_mb, wal_segments_ahead=model.wal_segments_ahead, )
[docs] @classmethod def convert_collection_config(cls, model: rest.CollectionConfig) -> grpc.CollectionConfig: return grpc.CollectionConfig( params=cls.convert_collection_params(model.params), hnsw_config=cls.convert_hnsw_config(model.hnsw_config), optimizer_config=cls.convert_optimizers_config(model.optimizer_config), wal_config=cls.convert_wal_config(model.wal_config), quantization_config=( cls.convert_quantization_config(model.quantization_config) if model.quantization_config is not None else None ), strict_mode_config=( cls.convert_strict_mode_config(model.strict_mode_config) if model.strict_mode_config is not None else None ), )
[docs] @classmethod def convert_hnsw_config(cls, model: rest.HnswConfig) -> grpc.HnswConfigDiff: return grpc.HnswConfigDiff( ef_construct=model.ef_construct, full_scan_threshold=model.full_scan_threshold, m=model.m, max_indexing_threads=model.max_indexing_threads, on_disk=model.on_disk, payload_m=model.payload_m, )
[docs] @classmethod def convert_wal_config(cls, model: rest.WalConfig) -> grpc.WalConfigDiff: return grpc.WalConfigDiff( wal_capacity_mb=model.wal_capacity_mb, wal_segments_ahead=model.wal_segments_ahead, )
[docs] @classmethod def convert_distance(cls, model: rest.Distance) -> grpc.Distance: if model == rest.Distance.DOT: return grpc.Distance.Dot if model == rest.Distance.COSINE: return grpc.Distance.Cosine if model == rest.Distance.EUCLID: return grpc.Distance.Euclid if model == rest.Distance.MANHATTAN: return grpc.Distance.Manhattan raise ValueError(f"invalid Distance model: {model}") # pragma: no cover
[docs] @classmethod def convert_collection_params(cls, model: rest.CollectionParams) -> grpc.CollectionParams: return grpc.CollectionParams( vectors_config=( cls.convert_vectors_config(model.vectors) if model.vectors is not None else None ), shard_number=model.shard_number, on_disk_payload=model.on_disk_payload or False, write_consistency_factor=model.write_consistency_factor, replication_factor=model.replication_factor, read_fan_out_factor=model.read_fan_out_factor, sparse_vectors_config=( cls.convert_sparse_vector_config(model.sparse_vectors) if model.sparse_vectors is not None else None ), sharding_method=( cls.convert_sharding_method(model.sharding_method) if model.sharding_method is not None else None ), )
[docs] @classmethod def convert_max_optimization_threads( cls, model: rest.MaxOptimizationThreads ) -> grpc.MaxOptimizationThreads: if model == rest.MaxOptimizationThreadsSetting.AUTO: return grpc.MaxOptimizationThreads(setting=grpc.MaxOptimizationThreads.Setting.Auto) elif isinstance(model, int): return grpc.MaxOptimizationThreads(value=model) raise ValueError(f"invalid MaxOptimizationThreads model: {model}") # pragma: no cover
[docs] @classmethod def convert_optimizers_config(cls, model: rest.OptimizersConfig) -> grpc.OptimizersConfigDiff: return grpc.OptimizersConfigDiff( default_segment_number=model.default_segment_number, deleted_threshold=model.deleted_threshold, flush_interval_sec=model.flush_interval_sec, indexing_threshold=model.indexing_threshold, max_optimization_threads=cls.convert_max_optimization_threads( model.max_optimization_threads ) if model.max_optimization_threads is not None else None, max_segment_size=model.max_segment_size, memmap_threshold=model.memmap_threshold, vacuum_min_vector_number=model.vacuum_min_vector_number, deprecated_max_optimization_threads=model.max_optimization_threads, )
[docs] @classmethod def convert_optimizers_config_diff( cls, model: rest.OptimizersConfigDiff ) -> grpc.OptimizersConfigDiff: deprecated_max_optimization_threads = None if isinstance(model.max_optimization_threads, int): deprecated_max_optimization_threads = model.max_optimization_threads return grpc.OptimizersConfigDiff( default_segment_number=model.default_segment_number, deleted_threshold=model.deleted_threshold, flush_interval_sec=model.flush_interval_sec, indexing_threshold=model.indexing_threshold, max_optimization_threads=cls.convert_max_optimization_threads( model.max_optimization_threads ) if model.max_optimization_threads is not None else None, max_segment_size=model.max_segment_size, memmap_threshold=model.memmap_threshold, vacuum_min_vector_number=model.vacuum_min_vector_number, deprecated_max_optimization_threads=deprecated_max_optimization_threads, )
[docs] @classmethod def convert_update_collection( cls, model: rest.UpdateCollection, collection_name: str ) -> grpc.UpdateCollection: return grpc.UpdateCollection( collection_name=collection_name, optimizers_config=( cls.convert_optimizers_config_diff(model.optimizers_config) if model.optimizers_config is not None else None ), vectors_config=( cls.convert_vectors_config_diff(model.vectors) if model.vectors is not None else None ), params=( cls.convert_collection_params_diff(model.params) if model.params is not None else None ), hnsw_config=( cls.convert_hnsw_config_diff(model.hnsw_config) if model.hnsw_config is not None else None ), quantization_config=( cls.convert_quantization_config_diff(model.quantization_config) if model.quantization_config is not None else None ), )
[docs] @classmethod def convert_geo_point(cls, model: rest.GeoPoint) -> grpc.GeoPoint: return grpc.GeoPoint(lon=model.lon, lat=model.lat)
[docs] @classmethod def convert_match(cls, model: rest.Match) -> grpc.Match: if isinstance(model, rest.MatchValue): if isinstance(model.value, bool): return grpc.Match(boolean=model.value) if isinstance(model.value, int): return grpc.Match(integer=model.value) if isinstance(model.value, str): return grpc.Match(keyword=model.value) if isinstance(model, rest.MatchText): return grpc.Match(text=model.text) if isinstance(model, rest.MatchAny): if len(model.any) == 0: return grpc.Match(keywords=grpc.RepeatedStrings(strings=[])) if isinstance(model.any[0], str): return grpc.Match(keywords=grpc.RepeatedStrings(strings=model.any)) if isinstance(model.any[0], int): return grpc.Match(integers=grpc.RepeatedIntegers(integers=model.any)) raise ValueError(f"invalid MatchAny model: {model}") # pragma: no cover if isinstance(model, rest.MatchExcept): if len(model.except_) == 0: return grpc.Match(except_keywords=grpc.RepeatedStrings(strings=[])) if isinstance(model.except_[0], str): return grpc.Match(except_keywords=grpc.RepeatedStrings(strings=model.except_)) if isinstance(model.except_[0], int): return grpc.Match(except_integers=grpc.RepeatedIntegers(integers=model.except_)) raise ValueError(f"invalid MatchExcept model: {model}") # pragma: no cover raise ValueError(f"invalid Match model: {model}") # pragma: no cover
[docs] @classmethod def convert_alias_operations(cls, model: rest.AliasOperations) -> grpc.AliasOperations: if isinstance(model, rest.CreateAliasOperation): return grpc.AliasOperations(create_alias=cls.convert_create_alias(model.create_alias)) if isinstance(model, rest.DeleteAliasOperation): return grpc.AliasOperations(delete_alias=cls.convert_delete_alias(model.delete_alias)) if isinstance(model, rest.RenameAliasOperation): return grpc.AliasOperations(rename_alias=cls.convert_rename_alias(model.rename_alias)) raise ValueError(f"invalid AliasOperations model: {model}") # pragma: no cover
[docs] @classmethod def convert_alias_description(cls, model: rest.AliasDescription) -> grpc.AliasDescription: return grpc.AliasDescription( alias_name=model.alias_name, collection_name=model.collection_name, )
[docs] @classmethod def convert_recommend_examples_to_ids( cls, examples: Sequence[rest.RecommendExample] ) -> list[grpc.PointId]: ids: list[grpc.PointId] = [] for example in examples: if isinstance(example, get_args_subscribed(rest.ExtendedPointId)): id_ = cls.convert_extended_point_id(example) elif isinstance(example, grpc.PointId): id_ = example else: continue ids.append(id_) return ids
[docs] @classmethod def convert_recommend_examples_to_vectors( cls, examples: Sequence[rest.RecommendExample] ) -> list[grpc.Vector]: vectors: list[grpc.Vector] = [] for example in examples: if isinstance(example, grpc.Vector): vector = example elif isinstance(example, list): vector = grpc.Vector(data=example) elif isinstance(example, rest.SparseVector): vector = cls.convert_sparse_vector_to_vector(example) else: continue vectors.append(vector) return vectors
[docs] @classmethod def convert_vector_example(cls, model: rest.RecommendExample) -> grpc.VectorExample: return cls.convert_recommend_example(model)
[docs] @classmethod def convert_recommend_example(cls, model: rest.RecommendExample) -> grpc.VectorExample: if isinstance(model, get_args_subscribed(rest.ExtendedPointId)): return grpc.VectorExample(id=cls.convert_extended_point_id(model)) if isinstance(model, rest.SparseVector): return grpc.VectorExample(vector=cls.convert_sparse_vector_to_vector(model)) if isinstance(model, list): return grpc.VectorExample(vector=grpc.Vector(data=model)) raise ValueError(f"Invalid RecommendExample model: {model}") # pragma: no cover
[docs] @classmethod def convert_sparse_vector_to_vector(cls, model: rest.SparseVector) -> grpc.Vector: return grpc.Vector( data=model.values, indices=grpc.SparseIndices(data=model.indices), )
[docs] @classmethod def convert_sparse_vector_to_vector_output(cls, model: rest.SparseVector) -> grpc.VectorOutput: return grpc.VectorOutput( data=model.values, indices=grpc.SparseIndices(data=model.indices), )
[docs] @classmethod def convert_target_vector(cls, model: rest.RecommendExample) -> grpc.TargetVector: return grpc.TargetVector(single=cls.convert_recommend_example(model))
[docs] @classmethod def convert_context_example_pair( cls, model: rest.ContextExamplePair, ) -> grpc.ContextExamplePair: return grpc.ContextExamplePair( positive=cls.convert_recommend_example(model.positive), negative=cls.convert_recommend_example(model.negative), )
[docs] @classmethod def convert_extended_point_id(cls, model: rest.ExtendedPointId) -> grpc.PointId: if isinstance(model, int): return grpc.PointId(num=model) if isinstance(model, str): return grpc.PointId(uuid=model) raise ValueError(f"invalid ExtendedPointId model: {model}") # pragma: no cover
[docs] @classmethod def convert_points_selector(cls, model: rest.PointsSelector) -> grpc.PointsSelector: if isinstance(model, rest.PointIdsList): return grpc.PointsSelector( points=grpc.PointsIdsList( ids=[cls.convert_extended_point_id(point) for point in model.points] ) ) if isinstance(model, rest.FilterSelector): return grpc.PointsSelector(filter=cls.convert_filter(model.filter)) raise ValueError(f"invalid PointsSelector model: {model}") # pragma: no cover
[docs] @classmethod def convert_condition(cls, model: rest.Condition) -> grpc.Condition: if isinstance(model, rest.FieldCondition): return grpc.Condition(field=cls.convert_field_condition(model)) if isinstance(model, rest.IsEmptyCondition): return grpc.Condition(is_empty=cls.convert_is_empty_condition(model)) if isinstance(model, rest.IsNullCondition): return grpc.Condition(is_null=cls.convert_is_null_condition(model)) if isinstance(model, rest.HasIdCondition): return grpc.Condition(has_id=cls.convert_has_id_condition(model)) if isinstance(model, rest.HasVectorCondition): return grpc.Condition(has_vector=cls.convert_has_vector_condition(model)) if isinstance(model, rest.Filter): return grpc.Condition(filter=cls.convert_filter(model)) if isinstance(model, rest.NestedCondition): return grpc.Condition(nested=cls.convert_nested_condition(model)) raise ValueError(f"invalid Condition model: {model}") # pragma: no cover
[docs] @classmethod def convert_payload_selector(cls, model: rest.PayloadSelector) -> grpc.WithPayloadSelector: if isinstance(model, rest.PayloadSelectorInclude): return grpc.WithPayloadSelector( include=grpc.PayloadIncludeSelector(fields=model.include) ) if isinstance(model, rest.PayloadSelectorExclude): return grpc.WithPayloadSelector( exclude=grpc.PayloadExcludeSelector(fields=model.exclude) ) raise ValueError(f"invalid PayloadSelector model: {model}") # pragma: no cover
[docs] @classmethod def convert_with_payload_selector( cls, model: rest.PayloadSelector ) -> grpc.WithPayloadSelector: return cls.convert_with_payload_interface(model)
[docs] @classmethod def convert_with_payload_interface( cls, model: rest.WithPayloadInterface ) -> grpc.WithPayloadSelector: if isinstance(model, bool): return grpc.WithPayloadSelector(enable=model) elif isinstance(model, list): return grpc.WithPayloadSelector(include=grpc.PayloadIncludeSelector(fields=model)) elif isinstance(model, get_args(rest.PayloadSelector)): return cls.convert_payload_selector(model) raise ValueError(f"invalid WithPayloadInterface model: {model}") # pragma: no cover
[docs] @classmethod def convert_start_from(cls, model: rest.StartFrom) -> grpc.StartFrom: if isinstance(model, int): return grpc.StartFrom(integer=model) if isinstance(model, float): return grpc.StartFrom(float=model) if isinstance(model, datetime): ts = cls.convert_datetime(model) return grpc.StartFrom(timestamp=ts) if isinstance(model, str): # Pydantic also accepts strings as datetime if they are correctly formatted return grpc.StartFrom(datetime=model) raise ValueError(f"invalid StartFrom model: {model}") # pragma: no cover
[docs] @classmethod def convert_direction(cls, model: rest.Direction) -> grpc.Direction: if model == rest.Direction.ASC: return grpc.Direction.Asc if model == rest.Direction.DESC: return grpc.Direction.Desc raise ValueError(f"invalid Direction model: {model}") # pragma: no cover
[docs] @classmethod def convert_order_by(cls, model: rest.OrderBy) -> grpc.OrderBy: return grpc.OrderBy( key=model.key, direction=( cls.convert_direction(model.direction) if model.direction is not None else None ), start_from=( cls.convert_start_from(model.start_from) if model.start_from is not None else None ), )
[docs] @classmethod def convert_order_by_interface(cls, model: rest.OrderByInterface) -> grpc.OrderBy: # using no cover because there is no OrderByInterface in grpc if isinstance(model, str): return grpc.OrderBy(key=model) if isinstance(model, rest.OrderBy): return cls.convert_order_by(model) raise ValueError(f"invalid OrderByInterface model: {model}") # pragma: no cover
[docs] @classmethod def convert_facet_value(cls, model: rest.FacetValue) -> grpc.FacetValue: if isinstance(model, str): return grpc.FacetValue(string_value=model) if isinstance(model, int): return grpc.FacetValue(integer_value=model) raise ValueError(f"invalid FacetValue model: {model}") # pragma: no cover
[docs] @classmethod def convert_facet_value_hit(cls, model: rest.FacetValueHit) -> grpc.FacetHit: return grpc.FacetHit( value=cls.convert_facet_value(model.value), count=model.count, )
[docs] @classmethod def convert_record(cls, model: rest.Record) -> grpc.RetrievedPoint: return grpc.RetrievedPoint( id=cls.convert_extended_point_id(model.id), payload=cls.convert_payload(model.payload), vectors=cls.convert_vector_struct_output(model.vector) if model.vector is not None else None, shard_key=cls.convert_shard_key(model.shard_key) if model.shard_key else None, order_value=cls.convert_order_value(model.order_value) if model.order_value else None, )
[docs] @classmethod def convert_retrieved_point(cls, model: rest.Record) -> grpc.RetrievedPoint: return cls.convert_record(model)
[docs] @classmethod def convert_count_result(cls, model: rest.CountResult) -> grpc.CountResult: return grpc.CountResult(count=model.count)
[docs] @classmethod def convert_snapshot_description( cls, model: rest.SnapshotDescription ) -> grpc.SnapshotDescription: timestamp = Timestamp() timestamp.FromDatetime(datetime.fromisoformat(model.creation_time)) return grpc.SnapshotDescription( name=model.name, creation_time=timestamp, size=model.size, )
[docs] @classmethod def convert_datatype(cls, model: rest.Datatype) -> grpc.Datatype: if model == rest.Datatype.FLOAT32: return grpc.Datatype.Float32 if model == rest.Datatype.UINT8: return grpc.Datatype.Uint8 if model == rest.Datatype.FLOAT16: return grpc.Datatype.Float16 raise ValueError(f"invalid Datatype model: {model}") # pragma: no cover
[docs] @classmethod def convert_vector_params(cls, model: rest.VectorParams) -> grpc.VectorParams: return grpc.VectorParams( size=model.size, distance=cls.convert_distance(model.distance), hnsw_config=( cls.convert_hnsw_config_diff(model.hnsw_config) if model.hnsw_config is not None else None ), quantization_config=( cls.convert_quantization_config(model.quantization_config) if model.quantization_config is not None else None ), on_disk=model.on_disk, datatype=cls.convert_datatype(model.datatype) if model.datatype is not None else None, multivector_config=( cls.convert_multivector_config(model.multivector_config) if model.multivector_config is not None else None ), )
[docs] @classmethod def convert_multivector_config(cls, model: rest.MultiVectorConfig) -> grpc.MultiVectorConfig: return grpc.MultiVectorConfig( comparator=cls.convert_multivector_comparator(model.comparator) )
[docs] @classmethod def convert_multivector_comparator( cls, model: rest.MultiVectorComparator ) -> grpc.MultiVectorComparator: if model == rest.MultiVectorComparator.MAX_SIM: return grpc.MultiVectorComparator.MaxSim raise ValueError(f"invalid MultiVectorComparator model: {model}") # pragma: no cover
[docs] @classmethod def convert_vectors_config(cls, model: rest.VectorsConfig) -> grpc.VectorsConfig: if isinstance(model, rest.VectorParams): return grpc.VectorsConfig(params=cls.convert_vector_params(model)) elif isinstance(model, dict): return grpc.VectorsConfig( params_map=grpc.VectorParamsMap( map=dict((key, cls.convert_vector_params(val)) for key, val in model.items()) ) ) else: raise ValueError(f"invalid VectorsConfig model: {model}") # pragma: no cover
[docs] @classmethod def convert_vector_struct(cls, model: rest.VectorStruct) -> grpc.Vectors: def convert_vector(vector: Union[list[float], list[list[float]]]) -> grpc.Vector: if len(vector) != 0 and isinstance( vector[0], list ): # we can't say whether it is an empty dense or multi-dense vector return grpc.Vector( data=[ inner_vector for multi_vector in vector for inner_vector in multi_vector # type: ignore ], vectors_count=len(vector), ) return grpc.Vector(data=vector) if isinstance(model, list): return grpc.Vectors(vector=convert_vector(model)) elif isinstance(model, dict): vectors: dict = {} for key, val in model.items(): if isinstance(val, list): vectors.update({key: convert_vector(val)}) elif isinstance(val, rest.SparseVector): vectors.update({key: cls.convert_sparse_vector_to_vector(val)}) elif isinstance(val, rest.Document): vectors.update({key: grpc.Vector(document=cls.convert_document(val))}) elif isinstance(val, rest.Image): vectors.update({key: grpc.Vector(image=cls.convert_image(val))}) elif isinstance(val, rest.InferenceObject): vectors.update({key: grpc.Vector(object=cls.convert_inference_object(val))}) return grpc.Vectors(vectors=grpc.NamedVectors(vectors=vectors)) elif isinstance(model, rest.Document): return grpc.Vectors(vector=grpc.Vector(document=cls.convert_document(model))) elif isinstance(model, rest.Image): return grpc.Vectors(vector=grpc.Vector(image=cls.convert_image(model))) elif isinstance(model, rest.InferenceObject): return grpc.Vectors(vector=grpc.Vector(object=cls.convert_inference_object(model))) else: raise ValueError(f"invalid VectorStruct model: {model}") # pragma: no cover
[docs] @classmethod def convert_vector_struct_output(cls, model: rest.VectorStructOutput) -> grpc.VectorsOutput: def convert_vector(vector: Union[list[float], list[list[float]]]) -> grpc.VectorOutput: if len(vector) != 0 and isinstance( vector[0], list ): # we can't say whether it is an empty dense or multi-dense vector return grpc.VectorOutput( data=[ inner_vector for multi_vector in vector for inner_vector in multi_vector # type: ignore ], vectors_count=len(vector), ) return grpc.VectorOutput(data=vector) if isinstance(model, list): return grpc.VectorsOutput(vector=convert_vector(model)) elif isinstance(model, dict): vectors: dict = {} for key, val in model.items(): if isinstance(val, list): vectors.update({key: convert_vector(val)}) elif isinstance(val, rest.SparseVector): vectors.update({key: cls.convert_sparse_vector_to_vector_output(val)}) return grpc.VectorsOutput(vectors=grpc.NamedVectorsOutput(vectors=vectors)) else: raise ValueError(f"invalid VectorStructOutput model: {model}") # pragma: no cover
[docs] @classmethod def convert_with_vectors(cls, model: rest.WithVector) -> grpc.WithVectorsSelector: if isinstance(model, bool): return grpc.WithVectorsSelector(enable=model) elif isinstance(model, list): return grpc.WithVectorsSelector(include=grpc.VectorsSelector(names=model)) else: raise ValueError(f"invalid WithVectors model: {model}") # pragma: no cover
[docs] @classmethod def convert_batch_vector_struct( cls, model: rest.BatchVectorStruct, num_records: int ) -> list[grpc.Vectors]: if isinstance(model, list): return [cls.convert_vector_struct(item) for item in model] elif isinstance(model, dict): result: list[dict] = [{} for _ in range(num_records)] for key, val in model.items(): for i, item in enumerate(val): result[i][key] = item return [cls.convert_vector_struct(item) for item in result] else: raise ValueError(f"invalid BatchVectorStruct model: {model}") # pragma: no cover
[docs] @classmethod def convert_named_vector_struct( cls, model: rest.NamedVectorStruct ) -> tuple[list[float], Optional[grpc.SparseIndices], Optional[str]]: if isinstance(model, list): return model, None, None elif isinstance(model, rest.NamedVector): return model.vector, None, model.name elif isinstance(model, rest.NamedSparseVector): return model.vector.values, grpc.SparseIndices(data=model.vector.indices), model.name else: raise ValueError(f"invalid NamedVectorStruct model: {model}") # pragma: no cover
[docs] @classmethod def convert_dense_vector(cls, model: list[float]) -> grpc.DenseVector: return grpc.DenseVector(data=model)
[docs] @classmethod def convert_sparse_vector(cls, model: rest.SparseVector) -> grpc.SparseVector: return grpc.SparseVector(values=model.values, indices=model.indices)
[docs] @classmethod def convert_multi_dense_vector(cls, model: list[list[float]]) -> grpc.MultiDenseVector: return grpc.MultiDenseVector( vectors=[cls.convert_dense_vector(vector) for vector in model] )
[docs] @classmethod def convert_document(cls, model: rest.Document) -> grpc.Document: return grpc.Document( text=model.text, model=model.model, options=payload_to_grpc(model.options) )
[docs] @classmethod def convert_image(cls, model: rest.Image) -> grpc.Image: return grpc.Image( image=json_to_value(model.image), model=model.model, options=payload_to_grpc(model.options), )
[docs] @classmethod def convert_inference_object(cls, model: rest.InferenceObject) -> grpc.InferenceObject: return grpc.InferenceObject( object=json_to_value(model.object), model=model.model, options=payload_to_grpc(model.options), )
[docs] @classmethod def convert_vector_input(cls, model: rest.VectorInput) -> grpc.VectorInput: if isinstance(model, list): if len(model) != 0 and isinstance( model[0], list ): # we can't say whether it is an empty dense or multi-dense vector return grpc.VectorInput(multi_dense=cls.convert_multi_dense_vector(model)) return grpc.VectorInput(dense=cls.convert_dense_vector(model)) if isinstance(model, rest.SparseVector): return grpc.VectorInput(sparse=cls.convert_sparse_vector(model)) if isinstance(model, get_args_subscribed(rest.ExtendedPointId)): return grpc.VectorInput(id=cls.convert_extended_point_id(model)) if isinstance(model, rest.Document): return grpc.VectorInput(document=cls.convert_document(model)) if isinstance(model, rest.Image): return grpc.VectorInput(image=cls.convert_image(model)) if isinstance(model, rest.InferenceObject): return grpc.VectorInput(object=cls.convert_inference_object(model)) raise ValueError(f"invalid VectorInput model: {model}") # pragma: no cover
[docs] @classmethod def convert_recommend_input(cls, model: rest.RecommendInput) -> grpc.RecommendInput: return grpc.RecommendInput( positive=[cls.convert_vector_input(vector) for vector in model.positive] if model.positive is not None else None, negative=[cls.convert_vector_input(vector) for vector in model.negative] if model.negative is not None else None, strategy=cls.convert_recommend_strategy(model.strategy) if model.strategy is not None else None, )
[docs] @classmethod def convert_context_input_pair(cls, model: rest.ContextPair) -> grpc.ContextInputPair: return grpc.ContextInputPair( positive=cls.convert_vector_input(model.positive), negative=cls.convert_vector_input(model.negative), )
[docs] @classmethod def convert_context_input(cls, model: rest.ContextInput) -> grpc.ContextInput: if isinstance(model, list): return grpc.ContextInput( pairs=[cls.convert_context_input_pair(pair) for pair in model] ) if isinstance(model, rest.ContextPair): return grpc.ContextInput(pairs=[cls.convert_context_input_pair(model)]) raise ValueError(f"invalid ContextInput model: {model}") # pragma: no cover
[docs] @classmethod def convert_discover_input(cls, model: rest.DiscoverInput) -> grpc.DiscoverInput: return grpc.DiscoverInput( target=cls.convert_vector_input(model.target), context=cls.convert_context_input(model.context), )
[docs] @classmethod def convert_fusion(cls, model: rest.Fusion) -> grpc.Fusion: if model == rest.Fusion.RRF: return grpc.Fusion.RRF if model == rest.Fusion.DBSF: return grpc.Fusion.DBSF raise ValueError(f"invalid Fusion model: {model}") # pragma: no cover
[docs] @classmethod def convert_sample(cls, model: rest.Sample) -> grpc.Sample: if model == rest.Sample.RANDOM: return grpc.Sample.Random raise ValueError(f"invalid Sample model: {model}") # pragma: no cover
[docs] @classmethod def convert_query(cls, model: rest.Query) -> grpc.Query: if isinstance(model, rest.NearestQuery): return grpc.Query(nearest=cls.convert_vector_input(model.nearest)) if isinstance(model, rest.RecommendQuery): return grpc.Query(recommend=cls.convert_recommend_input(model.recommend)) if isinstance(model, rest.DiscoverQuery): return grpc.Query(discover=cls.convert_discover_input(model.discover)) if isinstance(model, rest.ContextQuery): return grpc.Query(context=cls.convert_context_input(model.context)) if isinstance(model, rest.OrderByQuery): return grpc.Query(order_by=cls.convert_order_by_interface(model.order_by)) if isinstance(model, rest.FusionQuery): return grpc.Query(fusion=cls.convert_fusion(model.fusion)) if isinstance(model, rest.SampleQuery): return grpc.Query(sample=cls.convert_sample(model.sample)) raise ValueError(f"invalid Query model: {model}") # pragma: no cover
[docs] @classmethod def convert_query_interface(cls, model: rest.QueryInterface) -> grpc.Query: if isinstance(model, get_args_subscribed(rest.VectorInput)): return grpc.Query(nearest=cls.convert_vector_input(model)) if isinstance(model, get_args(rest.Query)): return cls.convert_query(model) raise ValueError(f"invalid QueryInterface: {model}") # pragma: no cover
[docs] @classmethod def convert_prefetch_query(cls, model: rest.Prefetch) -> grpc.PrefetchQuery: prefetch = None if isinstance(model.prefetch, rest.Prefetch): prefetch = [cls.convert_prefetch_query(model.prefetch)] elif isinstance(model.prefetch, list): prefetch = [cls.convert_prefetch_query(prefetch) for prefetch in model.prefetch] return grpc.PrefetchQuery( prefetch=prefetch, query=cls.convert_query_interface(model.query) if model.query is not None else None, using=model.using if model.using is not None else None, filter=cls.convert_filter(model.filter) if model.filter is not None else None, params=cls.convert_search_params(model.params) if model.params is not None else None, score_threshold=model.score_threshold, limit=model.limit if model.limit is not None else None, lookup_from=cls.convert_lookup_location(model.lookup_from) if model.lookup_from is not None else None, )
[docs] @classmethod def convert_search_request( cls, model: rest.SearchRequest, collection_name: str ) -> grpc.SearchPoints: vector, sparse_indices, name = cls.convert_named_vector_struct(model.vector) return grpc.SearchPoints( collection_name=collection_name, vector=vector, sparse_indices=sparse_indices, filter=cls.convert_filter(model.filter) if model.filter is not None else None, limit=model.limit, with_payload=( cls.convert_with_payload_interface(model.with_payload) if model.with_payload is not None else None ), params=cls.convert_search_params(model.params) if model.params is not None else None, score_threshold=model.score_threshold, offset=model.offset, vector_name=name, with_vectors=( cls.convert_with_vectors(model.with_vector) if model.with_vector is not None else None ), shard_key_selector=( cls.convert_shard_key_selector(model.shard_key) if model.shard_key else None ), )
[docs] @classmethod def convert_search_points( cls, model: rest.SearchRequest, collection_name: str ) -> grpc.SearchPoints: return cls.convert_search_request(model, collection_name)
[docs] @classmethod def convert_query_request( cls, model: rest.QueryRequest, collection_name: str ) -> grpc.QueryPoints: prefetch = ( [model.prefetch] if isinstance(model.prefetch, rest.Prefetch) else model.prefetch ) return grpc.QueryPoints( collection_name=collection_name, prefetch=[cls.convert_prefetch_query(p) for p in prefetch] if model.prefetch is not None else None, query=cls.convert_query_interface(model.query) if model.query is not None else None, using=model.using, filter=cls.convert_filter(model.filter) if model.filter is not None else None, params=cls.convert_search_params(model.params) if model.params is not None else None, score_threshold=model.score_threshold, limit=model.limit, offset=model.offset, with_vectors=cls.convert_with_vectors(model.with_vector) if model.with_vector is not None else None, with_payload=( cls.convert_with_payload_interface(model.with_payload) if model.with_payload is not None else None ), shard_key_selector=( cls.convert_shard_key_selector(model.shard_key) if model.shard_key is not None else None ), lookup_from=cls.convert_lookup_location(model.lookup_from) if model.lookup_from is not None else None, )
[docs] @classmethod def convert_query_points( cls, model: rest.QueryRequest, collection_name: str ) -> grpc.QueryPoints: return cls.convert_query_request(model, collection_name)
[docs] @classmethod def convert_recommend_request( cls, model: rest.RecommendRequest, collection_name: str ) -> grpc.RecommendPoints: positive_ids = cls.convert_recommend_examples_to_ids(model.positive) negative_ids = cls.convert_recommend_examples_to_ids(model.negative) positive_vectors = cls.convert_recommend_examples_to_vectors(model.positive) negative_vectors = cls.convert_recommend_examples_to_vectors(model.negative) return grpc.RecommendPoints( collection_name=collection_name, positive=positive_ids, negative=negative_ids, filter=cls.convert_filter(model.filter) if model.filter is not None else None, limit=model.limit, with_payload=( cls.convert_with_payload_interface(model.with_payload) if model.with_payload is not None else None ), params=cls.convert_search_params(model.params) if model.params is not None else None, score_threshold=model.score_threshold, offset=model.offset, with_vectors=( cls.convert_with_vectors(model.with_vector) if model.with_vector is not None else None ), using=model.using, lookup_from=( cls.convert_lookup_location(model.lookup_from) if model.lookup_from is not None else None ), strategy=( cls.convert_recommend_strategy(model.strategy) if model.strategy is not None else None ), positive_vectors=positive_vectors, negative_vectors=negative_vectors, shard_key_selector=( cls.convert_shard_key_selector(model.shard_key) if model.shard_key else None ), )
[docs] @classmethod def convert_discover_points( cls, model: rest.DiscoverRequest, collection_name: str ) -> grpc.DiscoverPoints: return cls.convert_discover_request(model, collection_name)
[docs] @classmethod def convert_discover_request( cls, model: rest.DiscoverRequest, collection_name: str ) -> grpc.DiscoverPoints: target = cls.convert_target_vector(model.target) if model.target is not None else None context = ( [cls.convert_context_example_pair(pair) for pair in model.context] if model.context is not None else None ) query_filter = None if model.filter is None else cls.convert_filter(model=model.filter) search_params = None if model.params is None else cls.convert_search_params(model.params) with_payload = ( None if model.with_payload is None else cls.convert_with_payload_interface(model.with_payload) ) with_vectors = ( None if model.with_vector is None else cls.convert_with_vectors(model.with_vector) ) lookup_from = ( None if model.lookup_from is None else cls.convert_lookup_location(model.lookup_from) ) shard_key_selector = ( None if model.shard_key is None else cls.convert_shard_key_selector(model.shard_key) ) return grpc.DiscoverPoints( collection_name=collection_name, target=target, context=context, filter=query_filter, limit=model.limit, offset=model.offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, using=model.using, lookup_from=lookup_from, shard_key_selector=shard_key_selector, )
[docs] @classmethod def convert_recommend_points( cls, model: rest.RecommendRequest, collection_name: str ) -> grpc.RecommendPoints: return cls.convert_recommend_request(model, collection_name)
[docs] @classmethod def convert_tokenizer_type(cls, model: rest.TokenizerType) -> grpc.TokenizerType: if model == rest.TokenizerType.WORD: return grpc.TokenizerType.Word elif model == rest.TokenizerType.WHITESPACE: return grpc.TokenizerType.Whitespace elif model == rest.TokenizerType.PREFIX: return grpc.TokenizerType.Prefix elif model == rest.TokenizerType.MULTILINGUAL: return grpc.TokenizerType.Multilingual else: raise ValueError(f"invalid TokenizerType model: {model}") # pragma: no cover
[docs] @classmethod def convert_text_index_params(cls, model: rest.TextIndexParams) -> grpc.TextIndexParams: return grpc.TextIndexParams( tokenizer=( cls.convert_tokenizer_type(model.tokenizer) if model.tokenizer is not None else None ), lowercase=model.lowercase, min_token_len=model.min_token_len, max_token_len=model.max_token_len, )
[docs] @classmethod def convert_integer_index_params( cls, model: rest.IntegerIndexParams ) -> grpc.IntegerIndexParams: return grpc.IntegerIndexParams( lookup=model.lookup, range=model.range, is_principal=model.is_principal, on_disk=model.on_disk, )
[docs] @classmethod def convert_keyword_index_params( cls, model: rest.KeywordIndexParams ) -> grpc.KeywordIndexParams: return grpc.KeywordIndexParams(is_tenant=model.is_tenant, on_disk=model.on_disk)
[docs] @classmethod def convert_float_index_params(cls, model: rest.FloatIndexParams) -> grpc.FloatIndexParams: return grpc.FloatIndexParams(is_principal=model.is_principal, on_disk=model.on_disk)
[docs] @classmethod def convert_geo_index_params(cls, model: rest.GeoIndexParams) -> grpc.GeoIndexParams: return grpc.GeoIndexParams(on_disk=model.on_disk)
[docs] @classmethod def convert_bool_index_params(cls, model: rest.BoolIndexParams) -> grpc.BoolIndexParams: return grpc.BoolIndexParams(on_disk=model.on_disk)
[docs] @classmethod def convert_datetime_index_params( cls, model: rest.DatetimeIndexParams ) -> grpc.DatetimeIndexParams: return grpc.DatetimeIndexParams(is_principal=model.is_principal, on_disk=model.on_disk)
[docs] @classmethod def convert_uuid_index_params(cls, model: rest.UuidIndexParams) -> grpc.UuidIndexParams: return grpc.UuidIndexParams(is_tenant=model.is_tenant, on_disk=model.on_disk)
[docs] @classmethod def convert_collection_params_diff( cls, model: rest.CollectionParamsDiff ) -> grpc.CollectionParamsDiff: return grpc.CollectionParamsDiff( replication_factor=model.replication_factor, write_consistency_factor=model.write_consistency_factor, on_disk_payload=model.on_disk_payload, read_fan_out_factor=model.read_fan_out_factor, )
[docs] @classmethod def convert_lookup_location(cls, model: rest.LookupLocation) -> grpc.LookupLocation: return grpc.LookupLocation( collection_name=model.collection, vector_name=model.vector, )
[docs] @classmethod def convert_read_consistency(cls, model: rest.ReadConsistency) -> grpc.ReadConsistency: if isinstance(model, int): return grpc.ReadConsistency( factor=model, ) elif isinstance(model, rest.ReadConsistencyType): return grpc.ReadConsistency( type=cls.convert_read_consistency_type(model), ) else: raise ValueError(f"invalid ReadConsistency model: {model}") # pragma: no cover
[docs] @classmethod def convert_read_consistency_type( cls, model: rest.ReadConsistencyType ) -> grpc.ReadConsistencyType: if model == rest.ReadConsistencyType.MAJORITY: return grpc.ReadConsistencyType.Majority elif model == rest.ReadConsistencyType.ALL: return grpc.ReadConsistencyType.All elif model == rest.ReadConsistencyType.QUORUM: return grpc.ReadConsistencyType.Quorum else: raise ValueError(f"invalid ReadConsistencyType model: {model}") # pragma: no cover
[docs] @classmethod def convert_write_ordering(cls, model: rest.WriteOrdering) -> grpc.WriteOrdering: if model == rest.WriteOrdering.WEAK: return grpc.WriteOrdering(type=grpc.WriteOrderingType.Weak) elif model == rest.WriteOrdering.MEDIUM: return grpc.WriteOrdering(type=grpc.WriteOrderingType.Medium) elif model == rest.WriteOrdering.STRONG: return grpc.WriteOrdering(type=grpc.WriteOrderingType.Strong) else: raise ValueError(f"invalid WriteOrdering model: {model}") # pragma: no cover
[docs] @classmethod def convert_scalar_quantization_config( cls, model: rest.ScalarQuantizationConfig ) -> grpc.ScalarQuantization: return grpc.ScalarQuantization( type=grpc.QuantizationType.Int8, quantile=model.quantile, always_ram=model.always_ram, )
[docs] @classmethod def convert_product_quantization_config( cls, model: rest.ProductQuantizationConfig ) -> grpc.ProductQuantization: return grpc.ProductQuantization( compression=cls.convert_compression_ratio(model.compression), always_ram=model.always_ram, )
[docs] @classmethod def convert_binary_quantization_config( cls, model: rest.BinaryQuantizationConfig ) -> grpc.BinaryQuantization: return grpc.BinaryQuantization( always_ram=model.always_ram, )
[docs] @classmethod def convert_compression_ratio(cls, model: rest.CompressionRatio) -> grpc.CompressionRatio: if model == rest.CompressionRatio.X4: return grpc.CompressionRatio.x4 elif model == rest.CompressionRatio.X8: return grpc.CompressionRatio.x8 elif model == rest.CompressionRatio.X16: return grpc.CompressionRatio.x16 elif model == rest.CompressionRatio.X32: return grpc.CompressionRatio.x32 elif model == rest.CompressionRatio.X64: return grpc.CompressionRatio.x64 else: raise ValueError(f"invalid CompressionRatio model: {model}") # pragma: no cover
[docs] @classmethod def convert_quantization_config( cls, model: rest.QuantizationConfig ) -> grpc.QuantizationConfig: if isinstance(model, rest.ScalarQuantization): return grpc.QuantizationConfig( scalar=cls.convert_scalar_quantization_config(model.scalar) ) if isinstance(model, rest.ProductQuantization): return grpc.QuantizationConfig( product=cls.convert_product_quantization_config(model.product) ) if isinstance(model, rest.BinaryQuantization): return grpc.QuantizationConfig( binary=cls.convert_binary_quantization_config(model.binary) ) else: raise ValueError(f"invalid QuantizationConfig model: {model}") # pragma: no cover
[docs] @classmethod def convert_quantization_search_params( cls, model: rest.QuantizationSearchParams ) -> grpc.QuantizationSearchParams: return grpc.QuantizationSearchParams( ignore=model.ignore, rescore=model.rescore, oversampling=model.oversampling, )
[docs] @classmethod def convert_point_vectors(cls, model: rest.PointVectors) -> grpc.PointVectors: return grpc.PointVectors( id=cls.convert_extended_point_id(model.id), vectors=cls.convert_vector_struct(model.vector), )
[docs] @classmethod def convert_groups_result(cls, model: rest.GroupsResult) -> grpc.GroupsResult: return grpc.GroupsResult( groups=[cls.convert_point_group(group) for group in model.groups], )
[docs] @classmethod def convert_point_group(cls, model: rest.PointGroup) -> grpc.PointGroup: return grpc.PointGroup( id=cls.convert_group_id(model.id), hits=[cls.convert_scored_point(point) for point in model.hits], lookup=cls.convert_record(model.lookup) if model.lookup is not None else None, )
[docs] @classmethod def convert_group_id(cls, model: rest.GroupId) -> grpc.GroupId: if isinstance(model, str): return grpc.GroupId( string_value=model, ) elif isinstance(model, int): if model >= 0: return grpc.GroupId( unsigned_value=model, ) else: return grpc.GroupId( integer_value=model, ) else: raise ValueError(f"invalid GroupId model: {model}") # pragma: no cover
[docs] @classmethod def convert_with_lookup(cls, model: rest.WithLookup) -> grpc.WithLookup: return grpc.WithLookup( collection=model.collection, with_vectors=( cls.convert_with_vectors(model.with_vectors) if model.with_vectors is not None else None ), with_payload=( cls.convert_with_payload_interface(model.with_payload) if model.with_payload is not None else None ), )
[docs] @classmethod def convert_quantization_config_diff( cls, model: rest.QuantizationConfigDiff ) -> grpc.QuantizationConfigDiff: if isinstance(model, rest.ScalarQuantization): return grpc.QuantizationConfigDiff( scalar=cls.convert_scalar_quantization_config(model.scalar) ) if isinstance(model, rest.ProductQuantization): return grpc.QuantizationConfigDiff( product=cls.convert_product_quantization_config(model.product) ) if isinstance(model, rest.BinaryQuantization): return grpc.QuantizationConfigDiff( binary=cls.convert_binary_quantization_config(model.binary) ) if model == rest.Disabled.DISABLED: return grpc.QuantizationConfigDiff( disabled=grpc.Disabled(), ) else: raise ValueError(f"invalid QuantizationConfigDiff model: {model}") # pragma: no cover
[docs] @classmethod def convert_vector_params_diff(cls, model: rest.VectorParamsDiff) -> grpc.VectorParamsDiff: return grpc.VectorParamsDiff( hnsw_config=( cls.convert_hnsw_config_diff(model.hnsw_config) if model.hnsw_config is not None else None ), quantization_config=( cls.convert_quantization_config_diff(model.quantization_config) if model.quantization_config is not None else None ), on_disk=model.on_disk, )
[docs] @classmethod def convert_vectors_config_diff(cls, model: rest.VectorsConfigDiff) -> grpc.VectorsConfigDiff: if isinstance(model, dict) and len(model) == 1 and "" in model: return grpc.VectorsConfigDiff(params=cls.convert_vector_params_diff(model[""])) elif isinstance(model, dict): return grpc.VectorsConfigDiff( params_map=grpc.VectorParamsDiffMap( map=dict( (key, cls.convert_vector_params_diff(val)) for key, val in model.items() ) ) ) else: raise ValueError(f"invalid VectorsConfigDiff model: {model}") # pragma: no cover
[docs] @classmethod def convert_point_insert_operation( cls, model: rest.PointInsertOperations ) -> list[grpc.PointStruct]: if isinstance(model, rest.PointsBatch): vectors_batch: list[grpc.Vectors] = cls.convert_batch_vector_struct( model.batch.vectors, len(model.batch.ids) ) return [ grpc.PointStruct( id=RestToGrpc.convert_extended_point_id(model.batch.ids[idx]), vectors=vectors_batch[idx], payload=( RestToGrpc.convert_payload(model.batch.payloads[idx]) if model.batch.payloads is not None else None ), ) for idx in range(len(model.batch.ids)) ] elif isinstance(model, rest.PointsList): return [cls.convert_point_struct(point) for point in model.points] else: raise ValueError(f"invalid PointInsertOperations model: {model}") # pragma: no cover
[docs] @classmethod def convert_update_operation(cls, model: rest.UpdateOperation) -> grpc.PointsUpdateOperation: return cls.convert_points_update_operation(model)
[docs] @classmethod def convert_points_update_operation( cls, model: rest.UpdateOperation ) -> grpc.PointsUpdateOperation: if isinstance(model, rest.UpsertOperation): shard_key_selector = ( cls.convert_shard_key_selector(model.upsert.shard_key) if model.upsert.shard_key else None ) return grpc.PointsUpdateOperation( upsert=grpc.PointsUpdateOperation.PointStructList( points=cls.convert_point_insert_operation(model.upsert), shard_key_selector=shard_key_selector, ) ) elif isinstance(model, rest.DeleteOperation): shard_key_selector = ( cls.convert_shard_key_selector(model.delete.shard_key) if model.delete.shard_key else None ) points_selector = cls.convert_points_selector(model.delete) delete_points = grpc.PointsUpdateOperation.DeletePoints( points=points_selector, shard_key_selector=shard_key_selector, ) return grpc.PointsUpdateOperation( delete_points=delete_points, ) elif isinstance(model, rest.SetPayloadOperation): if model.set_payload.points: points_selector = rest.PointIdsList(points=model.set_payload.points) elif model.set_payload.filter: points_selector = rest.FilterSelector(filter=model.set_payload.filter) else: raise ValueError(f"invalid SetPayloadOperation model: {model}") # pragma: no cover shard_key_selector = ( cls.convert_shard_key_selector(model.set_payload.shard_key) if model.set_payload.shard_key else None ) return grpc.PointsUpdateOperation( set_payload=grpc.PointsUpdateOperation.SetPayload( payload=cls.convert_payload(model.set_payload.payload), points_selector=cls.convert_points_selector(points_selector), shard_key_selector=shard_key_selector, ) ) elif isinstance(model, rest.OverwritePayloadOperation): if model.overwrite_payload.points: points_selector = rest.PointIdsList(points=model.overwrite_payload.points) elif model.overwrite_payload.filter: points_selector = rest.FilterSelector(filter=model.overwrite_payload.filter) else: raise ValueError( f"invalid OverwritePayloadOperation model: {model}" ) # pragma: no cover shard_key_selector = ( cls.convert_shard_key_selector(model.overwrite_payload.shard_key) if model.overwrite_payload.shard_key else None ) return grpc.PointsUpdateOperation( overwrite_payload=grpc.PointsUpdateOperation.OverwritePayload( payload=cls.convert_payload(model.overwrite_payload.payload), points_selector=cls.convert_points_selector(points_selector), shard_key_selector=shard_key_selector, ) ) elif isinstance(model, rest.DeletePayloadOperation): if model.delete_payload.points: points_selector = rest.PointIdsList(points=model.delete_payload.points) elif model.delete_payload.filter: points_selector = rest.FilterSelector(filter=model.delete_payload.filter) else: raise ValueError( f"invalid DeletePayloadOperation model: {model}" ) # pragma: no cover shard_key_selector = ( cls.convert_shard_key_selector(model.delete_payload.shard_key) if model.delete_payload.shard_key else None ) return grpc.PointsUpdateOperation( delete_payload=grpc.PointsUpdateOperation.DeletePayload( keys=model.delete_payload.keys, points_selector=cls.convert_points_selector(points_selector), shard_key_selector=shard_key_selector, ) ) elif isinstance(model, rest.ClearPayloadOperation): shard_key_selector = ( cls.convert_shard_key_selector(model.clear_payload.shard_key) if model.clear_payload.shard_key else None ) points_selector = cls.convert_points_selector(model.clear_payload) clear_payload = grpc.PointsUpdateOperation.ClearPayload( points=points_selector, shard_key_selector=shard_key_selector, ) return grpc.PointsUpdateOperation( clear_payload=clear_payload, ) elif isinstance(model, rest.UpdateVectorsOperation): shard_key_selector = ( cls.convert_shard_key_selector(model.update_vectors.shard_key) if model.update_vectors.shard_key else None ) return grpc.PointsUpdateOperation( update_vectors=grpc.PointsUpdateOperation.UpdateVectors( points=[ cls.convert_point_vectors(point) for point in model.update_vectors.points ], shard_key_selector=shard_key_selector, ) ) elif isinstance(model, rest.DeleteVectorsOperation): if model.delete_vectors.points: points_selector = rest.PointIdsList(points=model.delete_vectors.points) elif model.delete_vectors.filter: points_selector = rest.FilterSelector(filter=model.delete_vectors.filter) else: raise ValueError( f"invalid DeletePayloadOperation model: {model}" ) # pragma: no cover shard_key_selector = ( cls.convert_shard_key_selector(model.delete_vectors.shard_key) if model.delete_vectors.shard_key else None ) return grpc.PointsUpdateOperation( delete_vectors=grpc.PointsUpdateOperation.DeleteVectors( points_selector=cls.convert_points_selector(points_selector), vectors=grpc.VectorsSelector(names=model.delete_vectors.vector), shard_key_selector=shard_key_selector, ) ) else: raise ValueError(f"invalid UpdateOperation model: {model}") # pragma: no cover
[docs] @classmethod def convert_init_from(cls, model: rest.InitFrom) -> str: if isinstance(model, rest.InitFrom): return model.collection else: raise ValueError(f"invalid InitFrom model: {model}") # pragma: no cover
[docs] @classmethod def convert_recommend_strategy(cls, model: rest.RecommendStrategy) -> grpc.RecommendStrategy: if model == rest.RecommendStrategy.AVERAGE_VECTOR: return grpc.RecommendStrategy.AverageVector elif model == rest.RecommendStrategy.BEST_SCORE: return grpc.RecommendStrategy.BestScore else: raise ValueError(f"invalid RecommendStrategy model: {model}") # pragma: no cover
[docs] @classmethod def convert_sparse_index_params(cls, model: rest.SparseIndexParams) -> grpc.SparseIndexConfig: return grpc.SparseIndexConfig( full_scan_threshold=( model.full_scan_threshold if model.full_scan_threshold is not None else None ), on_disk=model.on_disk if model.on_disk is not None else None, datatype=cls.convert_datatype(model.datatype) if model.datatype is not None else None, )
[docs] @classmethod def convert_modifier(cls, model: rest.Modifier) -> grpc.Modifier: if model == rest.Modifier.IDF: return grpc.Modifier.Idf elif model == rest.Modifier.NONE: return getattr(grpc.Modifier, "None") else: raise ValueError(f"invalid Modifier model: {model}") # pragma: no cover
[docs] @classmethod def convert_sparse_vector_params( cls, model: rest.SparseVectorParams ) -> grpc.SparseVectorParams: return grpc.SparseVectorParams( index=( cls.convert_sparse_index_params(model.index) if model.index is not None else None ), modifier=( cls.convert_modifier(model.modifier) if model.modifier is not None else None ), )
[docs] @classmethod def convert_sparse_vector_config( cls, model: Mapping[str, rest.SparseVectorParams] ) -> grpc.SparseVectorConfig: return grpc.SparseVectorConfig( map=dict((key, cls.convert_sparse_vector_params(val)) for key, val in model.items()) )
[docs] @classmethod def convert_shard_key(cls, model: rest.ShardKey) -> grpc.ShardKey: if isinstance(model, int): return grpc.ShardKey(number=model) if isinstance(model, str): return grpc.ShardKey(keyword=model) raise ValueError(f"invalid ShardKey model: {model}") # pragma: no cover
[docs] @classmethod def convert_shard_key_selector(cls, model: rest.ShardKeySelector) -> grpc.ShardKeySelector: if isinstance(model, get_args_subscribed(rest.ShardKey)): return grpc.ShardKeySelector(shard_keys=[cls.convert_shard_key(model)]) if isinstance(model, list): return grpc.ShardKeySelector(shard_keys=[cls.convert_shard_key(key) for key in model]) raise ValueError(f"invalid ShardKeySelector model: {model}") # pragma: no cover
[docs] @classmethod def convert_sharding_method(cls, model: rest.ShardingMethod) -> grpc.ShardingMethod: if model == rest.ShardingMethod.AUTO: return grpc.Auto elif model == rest.ShardingMethod.CUSTOM: return grpc.Custom else: raise ValueError(f"invalid ShardingMethod model: {model}") # pragma: no cover
[docs] @classmethod def convert_health_check_reply(cls, model: rest.VersionInfo) -> grpc.HealthCheckReply: return grpc.HealthCheckReply( title=model.title, version=model.version, commit=model.commit, )
[docs] @classmethod def convert_search_matrix_pair(cls, model: rest.SearchMatrixPair) -> grpc.SearchMatrixPair: return grpc.SearchMatrixPair( a=cls.convert_extended_point_id(model.a), b=cls.convert_extended_point_id(model.b), score=model.score, )
[docs] @classmethod def convert_search_matrix_pairs( cls, model: rest.SearchMatrixPairsResponse ) -> grpc.SearchMatrixPairs: return grpc.SearchMatrixPairs( pairs=[cls.convert_search_matrix_pair(pair) for pair in model.pairs], )
[docs] @classmethod def convert_search_matrix_offsets( cls, model: rest.SearchMatrixOffsetsResponse ) -> grpc.SearchMatrixOffsets: return grpc.SearchMatrixOffsets( offsets_row=list(model.offsets_row), offsets_col=list(model.offsets_col), scores=list(model.scores), ids=[cls.convert_extended_point_id(p_id) for p_id in model.ids], )
[docs] @classmethod def convert_strict_mode_config(cls, model: rest.StrictModeConfig) -> grpc.StrictModeConfig: return grpc.StrictModeConfig( enabled=model.enabled, max_query_limit=model.max_query_limit, max_timeout=model.max_timeout, unindexed_filtering_retrieve=model.unindexed_filtering_retrieve, unindexed_filtering_update=model.unindexed_filtering_update, search_max_hnsw_ef=model.search_max_hnsw_ef, search_allow_exact=model.search_allow_exact, search_max_oversampling=model.search_max_oversampling, upsert_max_batchsize=model.upsert_max_batchsize, max_collection_vector_size_bytes=model.max_collection_vector_size_bytes, read_rate_limit=model.read_rate_limit, write_rate_limit=model.write_rate_limit, max_collection_payload_size_bytes=model.max_collection_payload_size_bytes, filter_max_conditions=model.filter_max_conditions, condition_max_size=model.condition_max_size, )

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community