Source code for qdrant_client.local.geo
from math import asin, cos, radians, sin, sqrt
from typing import List, Tuple
[docs]def geo_distance(lon1: float, lat1: float, lon2: float, lat2: float) -> float:
"""
Calculate distance between two points on Earth using Haversine formula.
Args:
lon1: longitude of first point
lat1: latitude of first point
lon2: longitude of second point
lat2: latitude of second point
Returns:
distance in meters
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2
c = 2 * asin(sqrt(a))
# Radius of earth in kilometers is 6371
km = 6371 * c
return km * 1000
[docs]def test_geo_distance() -> None:
moscow = {"lon": 37.6173, "lat": 55.7558}
london = {"lon": -0.1278, "lat": 51.5074}
berlin = {"lon": 13.4050, "lat": 52.5200}
assert geo_distance(moscow["lon"], moscow["lat"], moscow["lon"], moscow["lat"]) < 1.0
assert geo_distance(moscow["lon"], moscow["lat"], london["lon"], london["lat"]) > 2400 * 1000
assert geo_distance(moscow["lon"], moscow["lat"], london["lon"], london["lat"]) < 2600 * 1000
assert geo_distance(moscow["lon"], moscow["lat"], berlin["lon"], berlin["lat"]) > 1600 * 1000
assert geo_distance(moscow["lon"], moscow["lat"], berlin["lon"], berlin["lat"]) < 1650 * 1000
[docs]def boolean_point_in_polygon(
point: Tuple[float, float],
exterior: List[Tuple[float, float]],
interiors: List[List[Tuple[float, float]]],
) -> bool:
inside_poly = False
if in_ring(point, exterior, True):
in_hole = False
k = 0
while k < len(interiors) and not in_hole:
if in_ring(point, interiors[k], False):
in_hole = True
k += 1
if not in_hole:
inside_poly = True
return inside_poly
[docs]def in_ring(
pt: Tuple[float, float], ring: List[Tuple[float, float]], ignore_boundary: bool
) -> bool:
is_inside = False
if ring[0][0] == ring[len(ring) - 1][0] and ring[0][1] == ring[len(ring) - 1][1]:
ring = ring[0 : len(ring) - 1]
j = len(ring) - 1
for i in range(0, len(ring)):
xi = ring[i][0]
yi = ring[i][1]
xj = ring[j][0]
yj = ring[j][1]
on_boundary = (
(pt[1] * (xi - xj) + yi * (xj - pt[0]) + yj * (pt[0] - xi) == 0)
and ((xi - pt[0]) * (xj - pt[0]) <= 0)
and ((yi - pt[1]) * (yj - pt[1]) <= 0)
)
if on_boundary:
return not ignore_boundary
intersect = ((yi > pt[1]) != (yj > pt[1])) and (
pt[0] < (xj - xi) * (pt[1] - yi) / (yj - yi) + xi
)
if intersect:
is_inside = not is_inside
j = i
return is_inside