Source code for qdrant_client.local.payload_value_extractor

from typing import Any, List, Optional

from qdrant_client.local.json_path_parser import (

[docs]def value_by_key(payload: dict, key: str, flat: bool = True) -> Optional[List[Any]]: """ Get value from payload by key. Args: payload: arbitrary json-like object flat: If True, extend list of values. If False, append. By default, we use True and flatten the arrays, we need it for filters, however for `count` method we need to keep the arrays as is. key: Key or path to value in payload. Examples: - "name" - "" - "location[].name" - "location[0].name" Returns: List of values or None if key not found. """ keys = parse_json_path(key) result = [] def _get_value(data: Any, k_list: List[JsonPathItem]) -> None: if not k_list: return current_key = k_list.pop(0) if len(k_list) == 0: if isinstance(data, dict) and current_key.item_type == JsonPathItemType.KEY: if current_key.key in data: value = data[current_key.key] if isinstance(value, list) and flat: result.extend(value) else: result.append(value) elif isinstance(data, list): if current_key.item_type == JsonPathItemType.WILDCARD_INDEX: result.extend(data) elif current_key.item_type == JsonPathItemType.INDEX: assert current_key.index is not None if current_key.index < len(data): result.append(data[current_key.index]) elif current_key.item_type == JsonPathItemType.KEY: if not isinstance(data, dict): return if current_key.key in data: _get_value(data[current_key.key], k_list.copy()) elif current_key.item_type == JsonPathItemType.INDEX: assert current_key.index is not None if not isinstance(data, list): return if current_key.index < len(data): _get_value(data[current_key.index], k_list.copy()) elif current_key.item_type == JsonPathItemType.WILDCARD_INDEX: if not isinstance(data, list): return for item in data: _get_value(item, k_list.copy()) _get_value(payload, keys) return result if result else None


Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning


Find people dealing with similar problems and get answers to your questions

Join Community