Shortcuts

Source code for qdrant_client.local.qdrant_local

import importlib.metadata
import itertools
import json
import logging
import os
import shutil
from copy import deepcopy
from io import TextIOWrapper
from typing import (
    Any,
    Generator,
    Iterable,
    Mapping,
    Optional,
    Sequence,
    Union,
    get_args,
)
from uuid import uuid4

import numpy as np
import portalocker

from qdrant_client.common.client_warnings import show_warning, show_warning_once
from qdrant_client._pydantic_compat import to_dict
from qdrant_client.client_base import QdrantBase
from qdrant_client.conversions import common_types as types
from qdrant_client.http import models as rest_models
from qdrant_client.http.models.models import RecommendExample
from qdrant_client.local.local_collection import (
    LocalCollection,
    DEFAULT_VECTOR_NAME,
    ignore_mentioned_ids_filter,
)

META_INFO_FILENAME = "meta.json"


[docs]class QdrantLocal(QdrantBase): """ Everything Qdrant server can do, but locally. Use this implementation to run vector search without running a Qdrant server. Everything that works with local Qdrant will work with server Qdrant as well. Use for small-scale data, demos, and tests. If you need more speed or size, use Qdrant server. """ LARGE_DATA_THRESHOLD = 20_000 def __init__(self, location: str, force_disable_check_same_thread: bool = False) -> None: """ Initialize local Qdrant. Args: location: Where to store data. Can be a path to a directory or `:memory:` for in-memory storage. force_disable_check_same_thread: Disable SQLite check_same_thread check. Use only if you know what you are doing. """ super().__init__() self.force_disable_check_same_thread = force_disable_check_same_thread self.location = location self.persistent = location != ":memory:" self.collections: dict[str, LocalCollection] = {} self.aliases: dict[str, str] = {} self._flock_file: Optional[TextIOWrapper] = None self._load() self._closed: bool = False @property def closed(self) -> bool: return self._closed
[docs] def close(self, **kwargs: Any) -> None: self._closed = True for collection in self.collections.values(): if collection is not None: collection.close() else: show_warning( message=f"Collection appears to be None before closing. The existing collections are: " f"{list(self.collections.keys())}", category=UserWarning, stacklevel=4, ) try: if self._flock_file is not None and not self._flock_file.closed: portalocker.unlock(self._flock_file) self._flock_file.close() except TypeError: # sometimes portalocker module can be garbage collected before # QdrantLocal instance pass
def _load(self) -> None: if not self.persistent: return meta_path = os.path.join(self.location, META_INFO_FILENAME) if not os.path.exists(meta_path): os.makedirs(self.location, exist_ok=True) with open(meta_path, "w") as f: f.write(json.dumps({"collections": {}, "aliases": {}})) else: with open(meta_path, "r") as f: meta = json.load(f) for collection_name, config_json in meta["collections"].items(): config = rest_models.CreateCollection(**config_json) collection_path = self._collection_path(collection_name) collection = LocalCollection( config, collection_path, force_disable_check_same_thread=self.force_disable_check_same_thread, ) self.collections[collection_name] = collection if len(collection.ids) > self.LARGE_DATA_THRESHOLD: show_warning( f"Local mode is not recommended for collections with more than " f"{self.LARGE_DATA_THRESHOLD:,} points. " f"Collection <{collection_name}> contains {len(collection.ids)} points. " "Consider using Qdrant in Docker or Qdrant Cloud for better performance " "with large datasets.", category=UserWarning, stacklevel=5, ) self.aliases = meta["aliases"] lock_file_path = os.path.join(self.location, ".lock") if not os.path.exists(lock_file_path): os.makedirs(self.location, exist_ok=True) with open(lock_file_path, "w") as f: f.write("tmp lock file") self._flock_file = open(lock_file_path, "r+") try: portalocker.lock( self._flock_file, portalocker.LockFlags.EXCLUSIVE | portalocker.LockFlags.NON_BLOCKING, ) except portalocker.exceptions.LockException: raise RuntimeError( f"Storage folder {self.location} is already accessed by another instance of Qdrant client." f" If you require concurrent access, use Qdrant server instead." ) def _save(self) -> None: if not self.persistent: return if self.closed: raise RuntimeError("QdrantLocal instance is closed. Please create a new instance.") meta_path = os.path.join(self.location, META_INFO_FILENAME) with open(meta_path, "w") as f: f.write( json.dumps( { "collections": { collection_name: to_dict(collection.config) for collection_name, collection in self.collections.items() }, "aliases": self.aliases, } ) ) def _get_collection(self, collection_name: str) -> LocalCollection: if self.closed: raise RuntimeError("QdrantLocal instance is closed. Please create a new instance.") if collection_name in self.collections: return self.collections[collection_name] if collection_name in self.aliases: return self.collections[self.aliases[collection_name]] raise ValueError(f"Collection {collection_name} not found")
[docs] def search_batch( self, collection_name: str, requests: Sequence[types.SearchRequest], **kwargs: Any, ) -> list[list[types.ScoredPoint]]: collection = self._get_collection(collection_name) return [ collection.search( query_vector=request.vector, query_filter=request.filter, limit=request.limit, offset=request.offset, with_payload=request.with_payload, with_vectors=request.with_vector, score_threshold=request.score_threshold, ) for request in requests ]
[docs] def search( self, collection_name: str, query_vector: Union[ types.NumpyArray, Sequence[float], tuple[str, list[float]], types.NamedVector, types.NamedSparseVector, ], query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: collection = self._get_collection(collection_name) return collection.search( query_vector=query_vector, query_filter=query_filter, limit=limit, offset=offset, with_payload=with_payload, with_vectors=with_vectors, score_threshold=score_threshold, )
[docs] def search_matrix_offsets( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, **kwargs: Any, ) -> types.SearchMatrixOffsetsResponse: collection = self._get_collection(collection_name) return collection.search_matrix_offsets( query_filter=query_filter, limit=limit, sample=sample, using=using )
[docs] def search_matrix_pairs( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, **kwargs: Any, ) -> types.SearchMatrixPairsResponse: collection = self._get_collection(collection_name) return collection.search_matrix_pairs( query_filter=query_filter, limit=limit, sample=sample, using=using )
[docs] def search_groups( self, collection_name: str, query_vector: Union[ types.NumpyArray, Sequence[float], tuple[str, list[float]], types.NamedVector, ], group_by: str, query_filter: Optional[rest_models.Filter] = None, search_params: Optional[rest_models.SearchParams] = None, limit: int = 10, group_size: int = 1, with_payload: Union[bool, Sequence[str], rest_models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, **kwargs: Any, ) -> types.GroupsResult: collection = self._get_collection(collection_name) with_lookup_collection = None if with_lookup is not None: if isinstance(with_lookup, str): with_lookup_collection = self._get_collection(with_lookup) else: with_lookup_collection = self._get_collection(with_lookup.collection) return collection.search_groups( query_vector=query_vector, query_filter=query_filter, limit=limit, group_by=group_by, group_size=group_size, with_payload=with_payload, with_vectors=with_vectors, score_threshold=score_threshold, with_lookup=with_lookup, with_lookup_collection=with_lookup_collection, )
def _resolve_query_input( self, collection_name: str, query: Optional[types.Query], using: Optional[str], lookup_from: Optional[types.LookupLocation], ) -> tuple[types.Query, set[types.PointId]]: """ Resolves any possible ids into vectors and returns a new query object, along with a set of the mentioned point ids that should be filtered when searching. """ lookup_collection_name = lookup_from.collection if lookup_from else collection_name collection = self._get_collection(lookup_collection_name) search_in_vector_name = using if using is not None else DEFAULT_VECTOR_NAME vector_name = ( lookup_from.vector if lookup_from is not None and lookup_from.vector is not None else search_in_vector_name ) sparse = vector_name in collection.sparse_vectors multi = vector_name in collection.multivectors if sparse: collection_vectors = collection.sparse_vectors elif multi: collection_vectors = collection.multivectors else: collection_vectors = collection.vectors # mentioned ids in the search collection which should be excluded from search mentioned_ids: set[types.PointId] = set() def input_into_vector( vector_input: types.VectorInput, ) -> types.VectorInput: if isinstance(vector_input, get_args(types.PointId)): point_id = vector_input # rename for clarity if point_id not in collection.ids: raise ValueError(f"Point {point_id} is not found in the collection") idx = collection.ids[point_id] if vector_name in collection_vectors: vec = collection_vectors[vector_name][idx] else: raise ValueError(f"Vector {vector_name} not found") if isinstance(vec, np.ndarray): vec = vec.tolist() if collection_name == lookup_collection_name: mentioned_ids.add(point_id) return vec else: return vector_input query = deepcopy(query) if isinstance(query, rest_models.NearestQuery): query.nearest = input_into_vector(query.nearest) elif isinstance(query, rest_models.RecommendQuery): if query.recommend.negative is not None: query.recommend.negative = [ input_into_vector(vector_input) for vector_input in query.recommend.negative ] if query.recommend.positive is not None: query.recommend.positive = [ input_into_vector(vector_input) for vector_input in query.recommend.positive ] elif isinstance(query, rest_models.DiscoverQuery): query.discover.target = input_into_vector(query.discover.target) pairs = ( query.discover.context if isinstance(query.discover.context, list) else [query.discover.context] ) query.discover.context = [ rest_models.ContextPair( positive=input_into_vector(pair.positive), negative=input_into_vector(pair.negative), ) for pair in pairs ] elif isinstance(query, rest_models.ContextQuery): pairs = query.context if isinstance(query.context, list) else [query.context] query.context = [ rest_models.ContextPair( positive=input_into_vector(pair.positive), negative=input_into_vector(pair.negative), ) for pair in pairs ] elif isinstance(query, rest_models.OrderByQuery): pass elif isinstance(query, rest_models.FusionQuery): pass return query, mentioned_ids def _resolve_prefetches_input( self, prefetch: Optional[Union[Sequence[types.Prefetch], types.Prefetch]], collection_name: str, ) -> list[types.Prefetch]: if prefetch is None: return [] if isinstance(prefetch, list) and len(prefetch) == 0: return [] prefetches = [] if isinstance(prefetch, types.Prefetch): prefetches = [prefetch] prefetches.extend( prefetch.prefetch if isinstance(prefetch.prefetch, list) else [prefetch.prefetch] ) elif isinstance(prefetch, Sequence): prefetches = list(prefetch) return [ self._resolve_prefetch_input(prefetch, collection_name) for prefetch in prefetches if prefetch is not None ] def _resolve_prefetch_input( self, prefetch: types.Prefetch, collection_name: str ) -> types.Prefetch: if prefetch.query is None: return prefetch prefetch = deepcopy(prefetch) query, mentioned_ids = self._resolve_query_input( collection_name, prefetch.query, prefetch.using, prefetch.lookup_from, ) prefetch.query = query prefetch.filter = ignore_mentioned_ids_filter(prefetch.filter, list(mentioned_ids)) prefetch.prefetch = self._resolve_prefetches_input(prefetch.prefetch, collection_name) return prefetch
[docs] def query_points( self, collection_name: str, query: Optional[types.Query] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, lookup_from: Optional[types.LookupLocation] = None, **kwargs: Any, ) -> types.QueryResponse: collection = self._get_collection(collection_name) if query is not None: query, mentioned_ids = self._resolve_query_input( collection_name, query, using, lookup_from ) query_filter = ignore_mentioned_ids_filter(query_filter, list(mentioned_ids)) prefetch = self._resolve_prefetches_input(prefetch, collection_name) return collection.query_points( query=query, prefetch=prefetch, query_filter=query_filter, using=using, score_threshold=score_threshold, limit=limit, offset=offset or 0, with_payload=with_payload, with_vectors=with_vectors, )
[docs] def query_batch_points( self, collection_name: str, requests: Sequence[types.QueryRequest], **kwargs: Any, ) -> list[types.QueryResponse]: collection = self._get_collection(collection_name) return [ collection.query_points( query=request.query, prefetch=request.prefetch, query_filter=request.filter, limit=request.limit, offset=request.offset or 0, with_payload=request.with_payload, with_vectors=request.with_vector, score_threshold=request.score_threshold, using=request.using, lookup_from_collection=self._get_collection(request.lookup_from.collection) if request.lookup_from else None, lookup_from_vector_name=request.lookup_from.vector if request.lookup_from else None, ) for request in requests ]
[docs] def query_points_groups( self, collection_name: str, group_by: str, query: Union[ types.PointId, list[float], list[list[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, types.Image, types.InferenceObject, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, group_size: int = 3, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, lookup_from: Optional[types.LookupLocation] = None, **kwargs: Any, ) -> types.GroupsResult: collection = self._get_collection(collection_name) if query is not None: query, mentioned_ids = self._resolve_query_input( collection_name, query, using, lookup_from ) query_filter = ignore_mentioned_ids_filter(query_filter, list(mentioned_ids)) with_lookup_collection = None if with_lookup is not None: if isinstance(with_lookup, str): with_lookup_collection = self._get_collection(with_lookup) else: with_lookup_collection = self._get_collection(with_lookup.collection) return collection.query_groups( query=query, query_filter=query_filter, using=using, prefetch=prefetch, limit=limit, group_by=group_by, group_size=group_size, with_payload=with_payload, with_vectors=with_vectors, score_threshold=score_threshold, with_lookup=with_lookup, with_lookup_collection=with_lookup_collection, )
[docs] def recommend_batch( self, collection_name: str, requests: Sequence[types.RecommendRequest], **kwargs: Any, ) -> list[list[types.ScoredPoint]]: collection = self._get_collection(collection_name) return [ collection.recommend( positive=request.positive, negative=request.negative, query_filter=request.filter, limit=request.limit, offset=request.offset, with_payload=request.with_payload, with_vectors=request.with_vector, score_threshold=request.score_threshold, using=request.using, lookup_from_collection=self._get_collection(request.lookup_from.collection) if request.lookup_from else None, lookup_from_vector_name=request.lookup_from.vector if request.lookup_from else None, strategy=request.strategy, ) for request in requests ]
[docs] def recommend( self, collection_name: str, positive: Optional[Sequence[RecommendExample]] = None, negative: Optional[Sequence[RecommendExample]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], types.PayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, strategy: Optional[types.RecommendStrategy] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: collection = self._get_collection(collection_name) return collection.recommend( positive=positive, negative=negative, query_filter=query_filter, limit=limit, offset=offset, with_payload=with_payload, with_vectors=with_vectors, score_threshold=score_threshold, using=using, lookup_from_collection=self._get_collection(lookup_from.collection) if lookup_from else None, lookup_from_vector_name=lookup_from.vector if lookup_from else None, strategy=strategy, )
[docs] def recommend_groups( self, collection_name: str, group_by: str, positive: Optional[Sequence[Union[types.PointId, list[float]]]] = None, negative: Optional[Sequence[Union[types.PointId, list[float]]]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, group_size: int = 1, score_threshold: Optional[float] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, with_lookup: Optional[types.WithLookupInterface] = None, strategy: Optional[types.RecommendStrategy] = None, **kwargs: Any, ) -> types.GroupsResult: collection = self._get_collection(collection_name) with_lookup_collection = None if with_lookup is not None: if isinstance(with_lookup, str): with_lookup_collection = self._get_collection(with_lookup) else: with_lookup_collection = self._get_collection(with_lookup.collection) return collection.recommend_groups( positive=positive, negative=negative, group_by=group_by, group_size=group_size, query_filter=query_filter, limit=limit, with_payload=with_payload, with_vectors=with_vectors, score_threshold=score_threshold, using=using, lookup_from_collection=self._get_collection(lookup_from.collection) if lookup_from else None, lookup_from_vector_name=lookup_from.vector if lookup_from else None, with_lookup=with_lookup, with_lookup_collection=with_lookup_collection, strategy=strategy, )
[docs] def discover( self, collection_name: str, target: Optional[types.TargetVector] = None, context: Optional[Sequence[types.ContextExamplePair]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], types.PayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: collection = self._get_collection(collection_name) return collection.discover( target=target, context=context, query_filter=query_filter, limit=limit, offset=offset, with_payload=with_payload, with_vectors=with_vectors, using=using, lookup_from_collection=self._get_collection(lookup_from.collection) if lookup_from else None, lookup_from_vector_name=lookup_from.vector if lookup_from else None, )
[docs] def discover_batch( self, collection_name: str, requests: Sequence[types.DiscoverRequest], **kwargs: Any, ) -> list[list[types.ScoredPoint]]: collection = self._get_collection(collection_name) return [ collection.discover( target=request.target, context=request.context, query_filter=request.filter, limit=request.limit, offset=request.offset, with_payload=request.with_payload, with_vectors=request.with_vector, using=request.using, lookup_from_collection=self._get_collection(request.lookup_from.collection) if request.lookup_from else None, lookup_from_vector_name=request.lookup_from.vector if request.lookup_from else None, ) for request in requests ]
[docs] def scroll( self, collection_name: str, scroll_filter: Optional[types.Filter] = None, limit: int = 10, order_by: Optional[types.OrderBy] = None, offset: Optional[types.PointId] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, **kwargs: Any, ) -> tuple[list[types.Record], Optional[types.PointId]]: collection = self._get_collection(collection_name) return collection.scroll( scroll_filter=scroll_filter, limit=limit, order_by=order_by, offset=offset, with_payload=with_payload, with_vectors=with_vectors, )
[docs] def count( self, collection_name: str, count_filter: Optional[types.Filter] = None, exact: bool = True, **kwargs: Any, ) -> types.CountResult: collection = self._get_collection(collection_name) return collection.count(count_filter=count_filter)
[docs] def facet( self, collection_name: str, key: str, facet_filter: Optional[types.Filter] = None, limit: int = 10, exact: bool = False, **kwargs: Any, ) -> types.FacetResponse: collection = self._get_collection(collection_name) return collection.facet(key=key, facet_filter=facet_filter, limit=limit)
[docs] def upsert( self, collection_name: str, points: types.Points, **kwargs: Any ) -> types.UpdateResult: collection = self._get_collection(collection_name) collection.upsert(points) return self._default_update_result()
[docs] def update_vectors( self, collection_name: str, points: Sequence[types.PointVectors], **kwargs: Any, ) -> types.UpdateResult: collection = self._get_collection(collection_name) collection.update_vectors(points) return self._default_update_result()
[docs] def delete_vectors( self, collection_name: str, vectors: Sequence[str], points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: collection = self._get_collection(collection_name) collection.delete_vectors(vectors, points) return self._default_update_result()
[docs] def retrieve( self, collection_name: str, ids: Sequence[types.PointId], with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, **kwargs: Any, ) -> list[types.Record]: collection = self._get_collection(collection_name) return collection.retrieve(ids, with_payload, with_vectors)
@classmethod def _default_update_result(cls, operation_id: int = 0) -> types.UpdateResult: return types.UpdateResult( operation_id=operation_id, status=rest_models.UpdateStatus.COMPLETED, )
[docs] def delete( self, collection_name: str, points_selector: types.PointsSelector, **kwargs: Any ) -> types.UpdateResult: collection = self._get_collection(collection_name) collection.delete(points_selector) return self._default_update_result()
[docs] def set_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, key: Optional[str] = None, **kwargs: Any, ) -> types.UpdateResult: collection = self._get_collection(collection_name) collection.set_payload(payload=payload, selector=points, key=key) return self._default_update_result()
[docs] def overwrite_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: collection = self._get_collection(collection_name) collection.overwrite_payload(payload=payload, selector=points) return self._default_update_result()
[docs] def delete_payload( self, collection_name: str, keys: Sequence[str], points: types.PointsSelector, **kwargs: Any, ) -> types.UpdateResult: collection = self._get_collection(collection_name) collection.delete_payload(keys=keys, selector=points) return self._default_update_result()
[docs] def clear_payload( self, collection_name: str, points_selector: types.PointsSelector, **kwargs: Any ) -> types.UpdateResult: collection = self._get_collection(collection_name) collection.clear_payload(selector=points_selector) return self._default_update_result()
[docs] def batch_update_points( self, collection_name: str, update_operations: Sequence[types.UpdateOperation], **kwargs: Any, ) -> list[types.UpdateResult]: collection = self._get_collection(collection_name) collection.batch_update_points(update_operations) return [self._default_update_result()] * len(update_operations)
[docs] def update_collection_aliases( self, change_aliases_operations: Sequence[types.AliasOperations], **kwargs: Any ) -> bool: for operation in change_aliases_operations: if isinstance(operation, rest_models.CreateAliasOperation): self._get_collection(operation.create_alias.collection_name) self.aliases[operation.create_alias.alias_name] = ( operation.create_alias.collection_name ) elif isinstance(operation, rest_models.DeleteAliasOperation): self.aliases.pop(operation.delete_alias.alias_name, None) elif isinstance(operation, rest_models.RenameAliasOperation): new_name = operation.rename_alias.new_alias_name old_name = operation.rename_alias.old_alias_name self.aliases[new_name] = self.aliases.pop(old_name) else: raise ValueError(f"Unknown operation: {operation}") self._save() return True
[docs] def get_collection_aliases( self, collection_name: str, **kwargs: Any ) -> types.CollectionsAliasesResponse: if self.closed: raise RuntimeError("QdrantLocal instance is closed. Please create a new instance.") return types.CollectionsAliasesResponse( aliases=[ rest_models.AliasDescription( alias_name=alias_name, collection_name=name, ) for alias_name, name in self.aliases.items() if name == collection_name ] )
[docs] def get_aliases(self, **kwargs: Any) -> types.CollectionsAliasesResponse: if self.closed: raise RuntimeError("QdrantLocal instance is closed. Please create a new instance.") return types.CollectionsAliasesResponse( aliases=[ rest_models.AliasDescription( alias_name=alias_name, collection_name=name, ) for alias_name, name in self.aliases.items() ] )
[docs] def get_collections(self, **kwargs: Any) -> types.CollectionsResponse: if self.closed: raise RuntimeError("QdrantLocal instance is closed. Please create a new instance.") return types.CollectionsResponse( collections=[ rest_models.CollectionDescription(name=name) for name, _ in self.collections.items() ] )
[docs] def get_collection(self, collection_name: str, **kwargs: Any) -> types.CollectionInfo: collection = self._get_collection(collection_name) return collection.info()
[docs] def collection_exists(self, collection_name: str, **kwargs: Any) -> bool: try: self._get_collection(collection_name) return True except ValueError: return False
[docs] def update_collection( self, collection_name: str, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, **kwargs: Any, ) -> bool: _collection = self._get_collection(collection_name) if sparse_vectors_config is not None: for vector_name, vector_params in sparse_vectors_config.items(): _collection.update_sparse_vectors_config(vector_name, vector_params) return True return False
def _collection_path(self, collection_name: str) -> Optional[str]: if self.persistent: return os.path.join(self.location, "collection", collection_name) else: return None
[docs] def delete_collection(self, collection_name: str, **kwargs: Any) -> bool: if self.closed: raise RuntimeError("QdrantLocal instance is closed. Please create a new instance.") _collection = self.collections.pop(collection_name, None) del _collection self.aliases = { alias_name: name for alias_name, name in self.aliases.items() if name != collection_name } collection_path = self._collection_path(collection_name) if collection_path is not None: shutil.rmtree(collection_path, ignore_errors=True) self._save() return True
[docs] def create_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], init_from: Optional[types.InitFrom] = None, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, **kwargs: Any, ) -> bool: if self.closed: raise RuntimeError("QdrantLocal instance is closed. Please create a new instance.") src_collection = None from_collection_name = None if init_from is not None: from_collection_name = ( init_from if isinstance(init_from, str) else init_from.collection ) src_collection = self._get_collection(from_collection_name) if collection_name in self.collections: raise ValueError(f"Collection {collection_name} already exists") collection_path = self._collection_path(collection_name) if collection_path is not None: os.makedirs(collection_path, exist_ok=True) collection = LocalCollection( rest_models.CreateCollection( vectors=vectors_config, sparse_vectors=sparse_vectors_config, ), location=collection_path, force_disable_check_same_thread=self.force_disable_check_same_thread, ) self.collections[collection_name] = collection if src_collection and from_collection_name: batch_size = 100 records, next_offset = self.scroll(from_collection_name, limit=2, with_vectors=True) self.upload_records( collection_name, records ) # it is not crucial to replace upload_records here # since it is an internal usage, and we don't have custom shard keys in qdrant local while next_offset is not None: records, next_offset = self.scroll( from_collection_name, offset=next_offset, limit=batch_size, with_vectors=True ) self.upload_records(collection_name, records) self._save() return True
[docs] def recreate_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], init_from: Optional[types.InitFrom] = None, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, **kwargs: Any, ) -> bool: self.delete_collection(collection_name) return self.create_collection( collection_name, vectors_config, init_from, sparse_vectors_config )
[docs] def upload_points( self, collection_name: str, points: Iterable[types.PointStruct], **kwargs: Any ) -> None: self._upload_points(collection_name, points)
[docs] def upload_records( self, collection_name: str, records: Iterable[types.Record], **kwargs: Any ) -> None: # upload_records in local mode behaves like upload_records with wait=True in server mode self._upload_points(collection_name, records)
def _upload_points( self, collection_name: str, points: Iterable[Union[types.PointStruct, types.Record]], ) -> None: collection = self._get_collection(collection_name) collection.upsert( [ rest_models.PointStruct( id=point.id, vector=point.vector or {}, payload=point.payload or {}, ) for point in points ] )
[docs] def upload_collection( self, collection_name: str, vectors: Union[ dict[str, types.NumpyArray], types.NumpyArray, Iterable[types.VectorStruct] ], payload: Optional[Iterable[dict[Any, Any]]] = None, ids: Optional[Iterable[types.PointId]] = None, **kwargs: Any, ) -> None: # upload_collection in local mode behaves like upload_collection with wait=True in server mode def uuid_generator() -> Generator[str, None, None]: while True: yield str(uuid4()) collection = self._get_collection(collection_name) if isinstance(vectors, dict) and any(isinstance(v, np.ndarray) for v in vectors.values()): assert ( len(set([arr.shape[0] for arr in vectors.values()])) == 1 ), "Each named vector should have the same number of vectors" num_vectors = next(iter(vectors.values())).shape[0] # convert dict[str, np.ndarray] to list[dict[str, list[float]]] vectors = [ {name: vectors[name][i].tolist() for name in vectors.keys()} for i in range(num_vectors) ] collection.upsert( [ rest_models.PointStruct( id=point_id, vector=(vector.tolist() if isinstance(vector, np.ndarray) else vector) or {}, payload=payload or {}, ) for (point_id, vector, payload) in zip( ids or uuid_generator(), iter(vectors), payload or itertools.cycle([{}]), ) ] )
[docs] def create_payload_index( self, collection_name: str, field_name: str, field_schema: Optional[types.PayloadSchemaType] = None, field_type: Optional[types.PayloadSchemaType] = None, **kwargs: Any, ) -> types.UpdateResult: show_warning_once( message="Payload indexes have no effect in the local Qdrant. Please use server Qdrant if you need payload indexes.", category=UserWarning, idx="create-local-payload-indexes", stacklevel=5, ) return self._default_update_result()
[docs] def delete_payload_index( self, collection_name: str, field_name: str, **kwargs: Any ) -> types.UpdateResult: show_warning_once( message="Payload indexes have no effect in the local Qdrant. Please use server Qdrant if you need payload indexes.", category=UserWarning, idx="delete-local-payload-indexes", stacklevel=5, ) return self._default_update_result()
[docs] def list_snapshots( self, collection_name: str, **kwargs: Any ) -> list[types.SnapshotDescription]: return []
[docs] def create_snapshot( self, collection_name: str, **kwargs: Any ) -> Optional[types.SnapshotDescription]: raise NotImplementedError( "Snapshots are not supported in the local Qdrant. Please use server Qdrant if you need full snapshots." )
[docs] def delete_snapshot(self, collection_name: str, snapshot_name: str, **kwargs: Any) -> bool: raise NotImplementedError( "Snapshots are not supported in the local Qdrant. Please use server Qdrant if you need full snapshots." )
[docs] def list_full_snapshots(self, **kwargs: Any) -> list[types.SnapshotDescription]: return []
[docs] def create_full_snapshot(self, **kwargs: Any) -> types.SnapshotDescription: raise NotImplementedError( "Snapshots are not supported in the local Qdrant. Please use server Qdrant if you need full snapshots." )
[docs] def delete_full_snapshot(self, snapshot_name: str, **kwargs: Any) -> bool: raise NotImplementedError( "Snapshots are not supported in the local Qdrant. Please use server Qdrant if you need full snapshots." )
[docs] def recover_snapshot(self, collection_name: str, location: str, **kwargs: Any) -> bool: raise NotImplementedError( "Snapshots are not supported in the local Qdrant. Please use server Qdrant if you need full snapshots." )
[docs] def list_shard_snapshots( self, collection_name: str, shard_id: int, **kwargs: Any ) -> list[types.SnapshotDescription]: return []
[docs] def create_shard_snapshot( self, collection_name: str, shard_id: int, **kwargs: Any ) -> Optional[types.SnapshotDescription]: raise NotImplementedError( "Snapshots are not supported in the local Qdrant. Please use server Qdrant if you need snapshots." )
[docs] def delete_shard_snapshot( self, collection_name: str, shard_id: int, snapshot_name: str, **kwargs: Any ) -> bool: raise NotImplementedError( "Snapshots are not supported in the local Qdrant. Please use server Qdrant if you need snapshots." )
[docs] def recover_shard_snapshot( self, collection_name: str, shard_id: int, location: str, **kwargs: Any, ) -> bool: raise NotImplementedError( "Snapshots are not supported in the local Qdrant. Please use server Qdrant if you need snapshots." )
[docs] def lock_storage(self, reason: str, **kwargs: Any) -> types.LocksOption: raise NotImplementedError( "Locks are not supported in the local Qdrant. Please use server Qdrant if you need full snapshots." )
[docs] def unlock_storage(self, **kwargs: Any) -> types.LocksOption: raise NotImplementedError( "Locks are not supported in the local Qdrant. Please use server Qdrant if you need full snapshots." )
[docs] def get_locks(self, **kwargs: Any) -> types.LocksOption: return types.LocksOption( error_message=None, write=False, )
[docs] def create_shard_key( self, collection_name: str, shard_key: types.ShardKey, shards_number: Optional[int] = None, replication_factor: Optional[int] = None, placement: Optional[list[int]] = None, **kwargs: Any, ) -> bool: raise NotImplementedError( "Sharding is not supported in the local Qdrant. Please use server Qdrant if you need sharding." )
[docs] def delete_shard_key( self, collection_name: str, shard_key: types.ShardKey, **kwargs: Any, ) -> bool: raise NotImplementedError( "Sharding is not supported in the local Qdrant. Please use server Qdrant if you need sharding." )
[docs] def info(self) -> types.VersionInfo: version = importlib.metadata.version("qdrant-client") return rest_models.VersionInfo( title="qdrant - vector search engine", version=version, commit=None )

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community