Shortcuts

Source code for qdrant_client.qdrant_remote

import importlib.metadata
import logging
import math
import platform
import warnings
from multiprocessing import get_all_start_methods
from typing import (
    Any,
    Awaitable,
    Callable,
    Iterable,
    Mapping,
    Optional,
    Sequence,
    Type,
    Union,
    get_args,
)

import httpx
import numpy as np
from grpc import Compression
from urllib3.util import Url, parse_url

from qdrant_client.common.client_warnings import show_warning, show_warning_once
from qdrant_client import grpc as grpc
from qdrant_client._pydantic_compat import construct
from qdrant_client.auth import BearerAuth
from qdrant_client.client_base import QdrantBase
from qdrant_client.common.version_check import is_compatible, get_server_version
from qdrant_client.connection import get_channel
from qdrant_client.conversions import common_types as types
from qdrant_client.conversions.common_types import get_args_subscribed
from qdrant_client.conversions.conversion import (
    GrpcToRest,
    RestToGrpc,
    grpc_payload_schema_to_field_type,
)
from qdrant_client.http import ApiClient, SyncApis, models
from qdrant_client.parallel_processor import ParallelWorkerPool
from qdrant_client.uploader.grpc_uploader import GrpcBatchUploader
from qdrant_client.uploader.rest_uploader import RestBatchUploader
from qdrant_client.uploader.uploader import BaseUploader


[docs]class QdrantRemote(QdrantBase): DEFAULT_GRPC_TIMEOUT = 5 # seconds def __init__( self, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[int] = None, host: Optional[str] = None, grpc_options: Optional[dict[str, Any]] = None, auth_token_provider: Optional[ Union[Callable[[], str], Callable[[], Awaitable[str]]] ] = None, check_compatibility: bool = True, **kwargs: Any, ): super().__init__(**kwargs) self._prefer_grpc = prefer_grpc self._grpc_port = grpc_port self._grpc_options = grpc_options or {} self._https = https if https is not None else api_key is not None self._scheme = "https" if self._https else "http" self._prefix = prefix or "" if len(self._prefix) > 0 and self._prefix[0] != "/": self._prefix = f"/{self._prefix}" if url is not None and host is not None: raise ValueError(f"Only one of (url, host) can be set. url is {url}, host is {host}") if host is not None and (host.startswith("http://") or host.startswith("https://")): raise ValueError( f"`host` param is not expected to contain protocol (http:// or https://). " f"Try to use `url` parameter instead." ) elif url: if url.startswith("localhost"): # Handle for a special case when url is localhost:port # Which is not parsed correctly by urllib url = f"//{url}" parsed_url: Url = parse_url(url) self._host, self._port = parsed_url.host, parsed_url.port if parsed_url.scheme: self._https = parsed_url.scheme == "https" self._scheme = parsed_url.scheme self._port = self._port if self._port else port if self._prefix and parsed_url.path: raise ValueError( "Prefix can be set either in `url` or in `prefix`. " f"url is {url}, prefix is {parsed_url.path}" ) elif parsed_url.path: self._prefix = parsed_url.path if self._scheme not in ("http", "https"): raise ValueError(f"Unknown scheme: {self._scheme}") else: self._host = host or "localhost" self._port = port _timeout = ( math.ceil(timeout) if timeout is not None else None ) # it has been changed from float to int. # convert it to the closest greater or equal int value (e.g. 0.5 -> 1) self._api_key = api_key self._auth_token_provider = auth_token_provider limits = kwargs.pop("limits", None) if limits is None: if self._host in ["localhost", "127.0.0.1"]: # Disable keep-alive for local connections # Cause in some cases, it may cause extra delays limits = httpx.Limits(max_connections=None, max_keepalive_connections=0) http2 = kwargs.pop("http2", False) self._grpc_headers = [] self._rest_headers = kwargs.pop("metadata", {}) if api_key is not None: if self._scheme == "http": show_warning( message="Api key is used with an insecure connection.", category=UserWarning, stacklevel=4, ) # http2 = True self._rest_headers["api-key"] = api_key self._grpc_headers.append(("api-key", api_key)) client_version = importlib.metadata.version("qdrant-client") python_version = platform.python_version() user_agent = f"qdrant-client/{client_version} python/{python_version}" self._rest_headers["User-Agent"] = user_agent self._grpc_options["grpc.primary_user_agent"] = user_agent # GRPC Channel-Level Compression grpc_compression: Optional[Compression] = kwargs.pop("grpc_compression", None) if grpc_compression is not None and not isinstance(grpc_compression, Compression): raise TypeError( f"Expected 'grpc_compression' to be of type " f"grpc.Compression or None, but got {type(grpc_compression)}" ) if grpc_compression == Compression.Deflate: raise ValueError( "grpc.Compression.Deflate is not supported. Try grpc.Compression.Gzip or grpc.Compression.NoCompression" ) self._grpc_compression = grpc_compression address = f"{self._host}:{self._port}" if self._port is not None else self._host self.rest_uri = f"{self._scheme}://{address}{self._prefix}" self._rest_args = {"headers": self._rest_headers, "http2": http2, **kwargs} if limits is not None: self._rest_args["limits"] = limits if _timeout is not None: self._rest_args["timeout"] = _timeout self._timeout = _timeout else: self._timeout = self.DEFAULT_GRPC_TIMEOUT if self._auth_token_provider is not None: if self._scheme == "http": show_warning( message="Auth token provider is used with an insecure connection.", category=UserWarning, stacklevel=4, ) bearer_auth = BearerAuth(self._auth_token_provider) self._rest_args["auth"] = bearer_auth self.openapi_client: SyncApis[ApiClient] = SyncApis( host=self.rest_uri, **self._rest_args, ) self._grpc_channel = None self._grpc_points_client: Optional[grpc.PointsStub] = None self._grpc_collections_client: Optional[grpc.CollectionsStub] = None self._grpc_snapshots_client: Optional[grpc.SnapshotsStub] = None self._grpc_root_client: Optional[grpc.QdrantStub] = None self._aio_grpc_points_client: Optional[grpc.PointsStub] = None self._aio_grpc_collections_client: Optional[grpc.CollectionsStub] = None self._aio_grpc_snapshots_client: Optional[grpc.SnapshotsStub] = None self._aio_grpc_root_client: Optional[grpc.QdrantStub] = None self._closed: bool = False if check_compatibility: client_version = importlib.metadata.version("qdrant-client") server_version = get_server_version( self.rest_uri, self._rest_headers, self._rest_args.get("auth") ) if not server_version: show_warning( message=f"Failed to obtain server version. Unable to check client-server compatibility. Set check_version=False to skip version check.", category=UserWarning, stacklevel=4, ) elif not is_compatible(client_version, server_version): show_warning( message=f"Qdrant client version {client_version} is incompatible with server version {server_version}. Major versions should match and minor version difference must not exceed 1. Set check_version=False to skip version check.", category=UserWarning, stacklevel=4, ) @property def closed(self) -> bool: return self._closed
[docs] def close(self, grpc_grace: Optional[float] = None, **kwargs: Any) -> None: if hasattr(self, "_grpc_channel") and self._grpc_channel is not None: try: self._grpc_channel.close() except AttributeError: show_warning( message="Unable to close grpc_channel. Connection was interrupted on the server side", category=RuntimeWarning, stacklevel=4, ) try: self.openapi_client.close() except Exception: show_warning( message="Unable to close http connection. Connection was interrupted on the server side", category=RuntimeWarning, stacklevel=4, ) self._closed = True
@staticmethod def _parse_url(url: str) -> tuple[Optional[str], str, Optional[int], Optional[str]]: parse_result: Url = parse_url(url) scheme, host, port, prefix = ( parse_result.scheme, parse_result.host, parse_result.port, parse_result.path, ) return scheme, host, port, prefix def _init_grpc_channel(self) -> None: if self._closed: raise RuntimeError("Client was closed. Please create a new QdrantClient instance.") if self._grpc_channel is None: self._grpc_channel = get_channel( host=self._host, port=self._grpc_port, ssl=self._https, metadata=self._grpc_headers, options=self._grpc_options, compression=self._grpc_compression, # sync get_channel does not accept coroutine functions, # but we can't check type here, since it'll get into async client as well auth_token_provider=self._auth_token_provider, # type: ignore ) def _init_grpc_points_client(self) -> None: self._init_grpc_channel() self._grpc_points_client = grpc.PointsStub(self._grpc_channel) def _init_grpc_collections_client(self) -> None: self._init_grpc_channel() self._grpc_collections_client = grpc.CollectionsStub(self._grpc_channel) def _init_grpc_snapshots_client(self) -> None: self._init_grpc_channel() self._grpc_snapshots_client = grpc.SnapshotsStub(self._grpc_channel) def _init_grpc_root_client(self) -> None: self._init_grpc_channel() self._grpc_root_client = grpc.QdrantStub(self._grpc_channel) @property def grpc_collections(self) -> grpc.CollectionsStub: """gRPC client for collections methods Returns: An instance of raw gRPC client, generated from Protobuf """ if self._grpc_collections_client is None: self._init_grpc_collections_client() return self._grpc_collections_client @property def grpc_points(self) -> grpc.PointsStub: """gRPC client for points methods Returns: An instance of raw gRPC client, generated from Protobuf """ if self._grpc_points_client is None: self._init_grpc_points_client() return self._grpc_points_client @property def grpc_snapshots(self) -> grpc.SnapshotsStub: """gRPC client for snapshots methods Returns: An instance of raw gRPC client, generated from Protobuf """ if self._grpc_snapshots_client is None: self._init_grpc_snapshots_client() return self._grpc_snapshots_client @property def grpc_root(self) -> grpc.QdrantStub: """gRPC client for info methods Returns: An instance of raw gRPC client, generated from Protobuf """ if self._grpc_root_client is None: self._init_grpc_root_client() return self._grpc_root_client @property def rest(self) -> SyncApis[ApiClient]: """REST Client Returns: An instance of raw REST API client, generated from OpenAPI schema """ return self.openapi_client @property def http(self) -> SyncApis[ApiClient]: """REST Client Returns: An instance of raw REST API client, generated from OpenAPI schema """ return self.openapi_client
[docs] def search_batch( self, collection_name: str, requests: Sequence[types.SearchRequest], consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[list[types.ScoredPoint]]: if self._prefer_grpc: requests = [ ( RestToGrpc.convert_search_request(r, collection_name) if isinstance(r, models.SearchRequest) else r ) for r in requests ] if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) grpc_res: grpc.SearchBatchResponse = self.grpc_points.SearchBatch( grpc.SearchBatchPoints( collection_name=collection_name, search_points=requests, read_consistency=consistency, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [ [GrpcToRest.convert_scored_point(hit) for hit in r.result] for r in grpc_res.result ] else: requests = [ (GrpcToRest.convert_search_points(r) if isinstance(r, grpc.SearchPoints) else r) for r in requests ] http_res: Optional[list[list[models.ScoredPoint]]] = ( self.http.search_api.search_batch_points( collection_name=collection_name, consistency=consistency, timeout=timeout, search_request_batch=models.SearchRequestBatch(searches=requests), ).result ) assert http_res is not None, "Search batch returned None" return http_res
[docs] def search( self, collection_name: str, query_vector: Union[ Sequence[float], tuple[str, list[float]], types.NamedVector, types.NamedSparseVector, types.NumpyArray, ], query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, append_payload: bool = True, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: if not append_payload: show_warning_once( message="Usage of `append_payload` is deprecated. Please consider using `with_payload` instead", category=DeprecationWarning, stacklevel=5, idx="search-append-payload", ) with_payload = append_payload if isinstance(query_vector, np.ndarray): query_vector = query_vector.tolist() if self._prefer_grpc: vector_name = None sparse_indices = None if isinstance(query_vector, types.NamedVector): vector = query_vector.vector vector_name = query_vector.name elif isinstance(query_vector, types.NamedSparseVector): vector_name = query_vector.name sparse_indices = grpc.SparseIndices(data=query_vector.vector.indices) vector = query_vector.vector.values elif isinstance(query_vector, tuple): vector_name = query_vector[0] vector = query_vector[1] else: vector = list(query_vector) if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.SearchResponse = self.grpc_points.Search( grpc.SearchPoints( collection_name=collection_name, vector=vector, vector_name=vector_name, filter=query_filter, limit=limit, offset=offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, read_consistency=consistency, timeout=timeout, sparse_indices=sparse_indices, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) return [GrpcToRest.convert_scored_point(hit) for hit in res.result] else: if isinstance(query_vector, tuple): query_vector = types.NamedVector(name=query_vector[0], vector=query_vector[1]) if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) search_result = self.http.search_api.search_points( collection_name=collection_name, consistency=consistency, timeout=timeout, search_request=models.SearchRequest( vector=query_vector, filter=query_filter, limit=limit, offset=offset, params=search_params, with_vector=with_vectors, with_payload=with_payload, score_threshold=score_threshold, shard_key=shard_key_selector, ), ) result: Optional[list[types.ScoredPoint]] = search_result.result assert result is not None, "Search returned None" return result
[docs] def query_points( self, collection_name: str, query: Union[ types.PointId, list[float], list[list[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, types.Image, types.InferenceObject, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.QueryResponse: if self._prefer_grpc: if query is not None: query = RestToGrpc.convert_query(query) if isinstance(prefetch, models.Prefetch): prefetch = [RestToGrpc.convert_prefetch_query(prefetch)] if isinstance(prefetch, list): prefetch = [ RestToGrpc.convert_prefetch_query(p) if isinstance(p, models.Prefetch) else p for p in prefetch ] if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.QueryResponse = self.grpc_points.Query( grpc.QueryPoints( collection_name=collection_name, query=query, prefetch=prefetch, filter=query_filter, limit=limit, offset=offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, using=using, lookup_from=lookup_from, timeout=timeout, shard_key_selector=shard_key_selector, read_consistency=consistency, ), timeout=timeout if timeout is not None else self._timeout, ) scored_points = [GrpcToRest.convert_scored_point(hit) for hit in res.result] return models.QueryResponse(points=scored_points) else: if isinstance(query, grpc.Query): query = GrpcToRest.convert_query(query) if isinstance(prefetch, grpc.PrefetchQuery): prefetch = GrpcToRest.convert_prefetch_query(prefetch) if isinstance(prefetch, list): prefetch = [ GrpcToRest.convert_prefetch_query(p) if isinstance(p, grpc.PrefetchQuery) else p for p in prefetch ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) query_request = models.QueryRequest( shard_key=shard_key_selector, prefetch=prefetch, query=query, using=using, filter=query_filter, params=search_params, score_threshold=score_threshold, limit=limit, offset=offset, with_vector=with_vectors, with_payload=with_payload, lookup_from=lookup_from, ) query_result = self.http.search_api.query_points( collection_name=collection_name, consistency=consistency, timeout=timeout, query_request=query_request, ) result: Optional[models.QueryResponse] = query_result.result assert result is not None, "Search returned None" return result
[docs] def query_batch_points( self, collection_name: str, requests: Sequence[types.QueryRequest], consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.QueryResponse]: if self._prefer_grpc: requests = [ ( RestToGrpc.convert_query_request(r, collection_name) if isinstance(r, models.QueryRequest) else r ) for r in requests ] if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) grpc_res: grpc.QueryBatchResponse = self.grpc_points.QueryBatch( grpc.QueryBatchPoints( collection_name=collection_name, query_points=requests, read_consistency=consistency, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [ models.QueryResponse( points=[GrpcToRest.convert_scored_point(hit) for hit in r.result] ) for r in grpc_res.result ] else: requests = [ (GrpcToRest.convert_query_points(r) if isinstance(r, grpc.QueryPoints) else r) for r in requests ] http_res: Optional[list[models.QueryResponse]] = ( self.http.search_api.query_batch_points( collection_name=collection_name, consistency=consistency, timeout=timeout, query_request_batch=models.QueryRequestBatch(searches=requests), ).result ) assert http_res is not None, "Query batch returned None" return http_res
[docs] def query_points_groups( self, collection_name: str, group_by: str, query: Union[ types.PointId, list[float], list[list[float]], types.SparseVector, types.Query, types.NumpyArray, types.Document, types.Image, types.InferenceObject, None, ] = None, using: Optional[str] = None, prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, group_size: int = 3, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.GroupsResult: if self._prefer_grpc: if query is not None: query = RestToGrpc.convert_query(query) if isinstance(prefetch, models.Prefetch): prefetch = [RestToGrpc.convert_prefetch_query(prefetch)] if isinstance(prefetch, list): prefetch = [ RestToGrpc.convert_prefetch_query(p) if isinstance(p, models.Prefetch) else p for p in prefetch ] if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(with_lookup, models.WithLookup): with_lookup = RestToGrpc.convert_with_lookup(with_lookup) if isinstance(with_lookup, str): with_lookup = grpc.WithLookup(collection=with_lookup) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) result: grpc.QueryGroupsResponse = self.grpc_points.QueryGroups( grpc.QueryPointGroups( collection_name=collection_name, query=query, prefetch=prefetch, filter=query_filter, limit=limit, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, using=using, group_by=group_by, group_size=group_size, with_lookup=with_lookup, lookup_from=lookup_from, timeout=timeout, shard_key_selector=shard_key_selector, read_consistency=consistency, ), timeout=timeout if timeout is not None else self._timeout, ).result return GrpcToRest.convert_groups_result(result) else: if isinstance(query, grpc.Query): query = GrpcToRest.convert_query(query) if isinstance(prefetch, grpc.PrefetchQuery): prefetch = GrpcToRest.convert_prefetch_query(prefetch) if isinstance(prefetch, list): prefetch = [ GrpcToRest.convert_prefetch_query(p) if isinstance(p, grpc.PrefetchQuery) else p for p in prefetch ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(with_lookup, grpc.WithLookup): with_lookup = GrpcToRest.convert_with_lookup(with_lookup) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) query_request = models.QueryGroupsRequest( shard_key=shard_key_selector, prefetch=prefetch, query=query, using=using, filter=query_filter, params=search_params, score_threshold=score_threshold, limit=limit, group_by=group_by, group_size=group_size, with_vector=with_vectors, with_payload=with_payload, with_lookup=with_lookup, lookup_from=lookup_from, ) query_result = self.http.search_api.query_points_groups( collection_name=collection_name, consistency=consistency, timeout=timeout, query_groups_request=query_request, ) assert query_result is not None, "Query points groups API returned None" return query_result.result
[docs] def search_groups( self, collection_name: str, query_vector: Union[ Sequence[float], tuple[str, list[float]], types.NamedVector, types.NamedSparseVector, types.NumpyArray, ], group_by: str, query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, group_size: int = 1, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[types.WithLookupInterface] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.GroupsResult: if self._prefer_grpc: vector_name = None sparse_indices = None if isinstance(with_lookup, models.WithLookup): with_lookup = RestToGrpc.convert_with_lookup(with_lookup) if isinstance(with_lookup, str): with_lookup = grpc.WithLookup(collection=with_lookup) if isinstance(query_vector, types.NamedVector): vector = query_vector.vector vector_name = query_vector.name elif isinstance(query_vector, types.NamedSparseVector): vector_name = query_vector.name sparse_indices = grpc.SparseIndices(data=query_vector.vector.indices) vector = query_vector.vector.values elif isinstance(query_vector, tuple): vector_name = query_vector[0] vector = query_vector[1] else: vector = list(query_vector) if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) result: grpc.GroupsResult = self.grpc_points.SearchGroups( grpc.SearchPointGroups( collection_name=collection_name, vector=vector, vector_name=vector_name, filter=query_filter, limit=limit, group_size=group_size, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, group_by=group_by, read_consistency=consistency, with_lookup=with_lookup, timeout=timeout, sparse_indices=sparse_indices, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ).result return GrpcToRest.convert_groups_result(result) else: if isinstance(with_lookup, grpc.WithLookup): with_lookup = GrpcToRest.convert_with_lookup(with_lookup) if isinstance(query_vector, tuple): query_vector = construct( models.NamedVector, name=query_vector[0], vector=query_vector[1], ) if isinstance(query_vector, np.ndarray): query_vector = query_vector.tolist() if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) search_groups_request = construct( models.SearchGroupsRequest, vector=query_vector, filter=query_filter, params=search_params, with_payload=with_payload, with_vector=with_vectors, score_threshold=score_threshold, group_by=group_by, group_size=group_size, limit=limit, with_lookup=with_lookup, shard_key=shard_key_selector, ) return self.openapi_client.search_api.search_point_groups( search_groups_request=search_groups_request, collection_name=collection_name, consistency=consistency, timeout=timeout, ).result
[docs] def search_matrix_pairs( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.SearchMatrixPairsResponse: if self._prefer_grpc: if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) response = self.grpc_points.SearchMatrixPairs( grpc.SearchMatrixPoints( collection_name=collection_name, filter=query_filter, sample=sample, limit=limit, using=using, timeout=timeout, read_consistency=consistency, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) return GrpcToRest.convert_search_matrix_pairs(response.result) if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) search_matrix_result = self.openapi_client.search_api.search_matrix_pairs( collection_name=collection_name, consistency=consistency, timeout=timeout, search_matrix_request=models.SearchMatrixRequest( shard_key=shard_key_selector, limit=limit, sample=sample, using=using, filter=query_filter, ), ).result assert search_matrix_result is not None, "Search matrix pairs returned None result" return search_matrix_result
[docs] def search_matrix_offsets( self, collection_name: str, query_filter: Optional[types.Filter] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.SearchMatrixOffsetsResponse: if self._prefer_grpc: if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) response = self.grpc_points.SearchMatrixOffsets( grpc.SearchMatrixPoints( collection_name=collection_name, filter=query_filter, sample=sample, limit=limit, using=using, timeout=timeout, read_consistency=consistency, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) return GrpcToRest.convert_search_matrix_offsets(response.result) if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) search_matrix_result = self.openapi_client.search_api.search_matrix_offsets( collection_name=collection_name, consistency=consistency, timeout=timeout, search_matrix_request=models.SearchMatrixRequest( shard_key=shard_key_selector, limit=limit, sample=sample, using=using, filter=query_filter, ), ).result assert search_matrix_result is not None, "Search matrix offsets returned None result" return search_matrix_result
[docs] def recommend_batch( self, collection_name: str, requests: Sequence[types.RecommendRequest], consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[list[types.ScoredPoint]]: if self._prefer_grpc: requests = [ ( RestToGrpc.convert_recommend_request(r, collection_name) if isinstance(r, models.RecommendRequest) else r ) for r in requests ] if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) grpc_res: grpc.SearchBatchResponse = self.grpc_points.RecommendBatch( grpc.RecommendBatchPoints( collection_name=collection_name, recommend_points=requests, read_consistency=consistency, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [ [GrpcToRest.convert_scored_point(hit) for hit in r.result] for r in grpc_res.result ] else: requests = [ ( GrpcToRest.convert_recommend_points(r) if isinstance(r, grpc.RecommendPoints) else r ) for r in requests ] http_res: list[list[models.ScoredPoint]] = self.http.search_api.recommend_batch_points( collection_name=collection_name, consistency=consistency, timeout=timeout, recommend_request_batch=models.RecommendRequestBatch(searches=requests), ).result return http_res
[docs] def recommend( self, collection_name: str, positive: Optional[Sequence[types.RecommendExample]] = None, negative: Optional[Sequence[types.RecommendExample]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], types.PayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, strategy: Optional[types.RecommendStrategy] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: if positive is None: positive = [] if negative is None: negative = [] if self._prefer_grpc: positive_ids = RestToGrpc.convert_recommend_examples_to_ids(positive) positive_vectors = RestToGrpc.convert_recommend_examples_to_vectors(positive) negative_ids = RestToGrpc.convert_recommend_examples_to_ids(negative) negative_vectors = RestToGrpc.convert_recommend_examples_to_vectors(negative) if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(strategy, (str, models.RecommendStrategy)): strategy = RestToGrpc.convert_recommend_strategy(strategy) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.SearchResponse = self.grpc_points.Recommend( grpc.RecommendPoints( collection_name=collection_name, positive=positive_ids, negative=negative_ids, filter=query_filter, limit=limit, offset=offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, using=using, lookup_from=lookup_from, read_consistency=consistency, strategy=strategy, positive_vectors=positive_vectors, negative_vectors=negative_vectors, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [GrpcToRest.convert_scored_point(hit) for hit in res.result] else: positive = [ ( GrpcToRest.convert_point_id(example) if isinstance(example, grpc.PointId) else example ) for example in positive ] negative = [ ( GrpcToRest.convert_point_id(example) if isinstance(example, grpc.PointId) else example ) for example in negative ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) result = self.openapi_client.search_api.recommend_points( collection_name=collection_name, consistency=consistency, timeout=timeout, recommend_request=models.RecommendRequest( filter=query_filter, positive=positive, negative=negative, params=search_params, limit=limit, offset=offset, with_payload=with_payload, with_vector=with_vectors, score_threshold=score_threshold, lookup_from=lookup_from, using=using, strategy=strategy, shard_key=shard_key_selector, ), ).result assert result is not None, "Recommend points API returned None" return result
[docs] def recommend_groups( self, collection_name: str, group_by: str, positive: Optional[Sequence[Union[types.PointId, list[float]]]] = None, negative: Optional[Sequence[Union[types.PointId, list[float]]]] = None, query_filter: Optional[models.Filter] = None, search_params: Optional[models.SearchParams] = None, limit: int = 10, group_size: int = 1, score_threshold: Optional[float] = None, with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, using: Optional[str] = None, lookup_from: Optional[models.LookupLocation] = None, with_lookup: Optional[types.WithLookupInterface] = None, strategy: Optional[types.RecommendStrategy] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.GroupsResult: positive = positive if positive is not None else [] negative = negative if negative is not None else [] if self._prefer_grpc: if isinstance(with_lookup, models.WithLookup): with_lookup = RestToGrpc.convert_with_lookup(with_lookup) if isinstance(with_lookup, str): with_lookup = grpc.WithLookup(collection=with_lookup) positive_ids = RestToGrpc.convert_recommend_examples_to_ids(positive) positive_vectors = RestToGrpc.convert_recommend_examples_to_vectors(positive) negative_ids = RestToGrpc.convert_recommend_examples_to_ids(negative) negative_vectors = RestToGrpc.convert_recommend_examples_to_vectors(negative) if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(strategy, (str, models.RecommendStrategy)): strategy = RestToGrpc.convert_recommend_strategy(strategy) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.GroupsResult = self.grpc_points.RecommendGroups( grpc.RecommendPointGroups( collection_name=collection_name, positive=positive_ids, negative=negative_ids, filter=query_filter, group_by=group_by, limit=limit, group_size=group_size, with_vectors=with_vectors, with_payload=with_payload, params=search_params, score_threshold=score_threshold, using=using, lookup_from=lookup_from, read_consistency=consistency, with_lookup=with_lookup, strategy=strategy, positive_vectors=positive_vectors, negative_vectors=negative_vectors, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ).result assert res is not None, "Recommend groups API returned None" return GrpcToRest.convert_groups_result(res) else: if isinstance(with_lookup, grpc.WithLookup): with_lookup = GrpcToRest.convert_with_lookup(with_lookup) positive = [ ( GrpcToRest.convert_point_id(point_id) if isinstance(point_id, grpc.PointId) else point_id ) for point_id in positive ] negative = [ ( GrpcToRest.convert_point_id(point_id) if isinstance(point_id, grpc.PointId) else point_id ) for point_id in negative ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) result = self.openapi_client.search_api.recommend_point_groups( collection_name=collection_name, consistency=consistency, timeout=timeout, recommend_groups_request=construct( models.RecommendGroupsRequest, positive=positive, negative=negative, filter=query_filter, group_by=group_by, limit=limit, group_size=group_size, params=search_params, with_payload=with_payload, with_vector=with_vectors, score_threshold=score_threshold, lookup_from=lookup_from, using=using, with_lookup=with_lookup, strategy=strategy, shard_key=shard_key_selector, ), ).result assert result is not None, "Recommend points API returned None" return result
[docs] def discover( self, collection_name: str, target: Optional[types.TargetVector] = None, context: Optional[Sequence[types.ContextExamplePair]] = None, query_filter: Optional[types.Filter] = None, search_params: Optional[types.SearchParams] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], types.PayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, using: Optional[str] = None, lookup_from: Optional[types.LookupLocation] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.ScoredPoint]: if context is None: context = [] if self._prefer_grpc: target = ( RestToGrpc.convert_target_vector(target) if target is not None and isinstance(target, get_args_subscribed(models.RecommendExample)) else target ) context = [ ( RestToGrpc.convert_context_example_pair(pair) if isinstance(pair, models.ContextExamplePair) else pair ) for pair in context ] if isinstance(query_filter, models.Filter): query_filter = RestToGrpc.convert_filter(model=query_filter) if isinstance(search_params, models.SearchParams): search_params = RestToGrpc.convert_search_params(search_params) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(lookup_from, models.LookupLocation): lookup_from = RestToGrpc.convert_lookup_location(lookup_from) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) res: grpc.SearchResponse = self.grpc_points.Discover( grpc.DiscoverPoints( collection_name=collection_name, target=target, context=context, filter=query_filter, limit=limit, offset=offset, with_vectors=with_vectors, with_payload=with_payload, params=search_params, using=using, lookup_from=lookup_from, read_consistency=consistency, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [GrpcToRest.convert_scored_point(hit) for hit in res.result] else: target = ( GrpcToRest.convert_target_vector(target) if target is not None and isinstance(target, grpc.TargetVector) else target ) context = [ ( GrpcToRest.convert_context_example_pair(pair) if isinstance(pair, grpc.ContextExamplePair) else pair ) for pair in context ] if isinstance(query_filter, grpc.Filter): query_filter = GrpcToRest.convert_filter(model=query_filter) if isinstance(search_params, grpc.SearchParams): search_params = GrpcToRest.convert_search_params(search_params) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) if isinstance(lookup_from, grpc.LookupLocation): lookup_from = GrpcToRest.convert_lookup_location(lookup_from) result = self.openapi_client.search_api.discover_points( collection_name=collection_name, consistency=consistency, timeout=timeout, discover_request=models.DiscoverRequest( target=target, context=context, filter=query_filter, params=search_params, limit=limit, offset=offset, with_payload=with_payload, with_vector=with_vectors, lookup_from=lookup_from, using=using, shard_key=shard_key_selector, ), ).result assert result is not None, "Discover points API returned None" return result
[docs] def discover_batch( self, collection_name: str, requests: Sequence[types.DiscoverRequest], consistency: Optional[types.ReadConsistency] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[list[types.ScoredPoint]]: if self._prefer_grpc: requests = [ ( RestToGrpc.convert_discover_request(r, collection_name) if isinstance(r, models.DiscoverRequest) else r ) for r in requests ] grpc_res: grpc.SearchBatchResponse = self.grpc_points.DiscoverBatch( grpc.DiscoverBatchPoints( collection_name=collection_name, discover_points=requests, read_consistency=consistency, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [ [GrpcToRest.convert_scored_point(hit) for hit in r.result] for r in grpc_res.result ] else: requests = [ ( GrpcToRest.convert_discover_points(r) if isinstance(r, grpc.DiscoverPoints) else r ) for r in requests ] http_res: list[list[models.ScoredPoint]] = self.http.search_api.discover_batch_points( collection_name=collection_name, discover_request_batch=models.DiscoverRequestBatch(searches=requests), consistency=consistency, timeout=timeout, ).result return http_res
[docs] def scroll( self, collection_name: str, scroll_filter: Optional[types.Filter] = None, limit: int = 10, order_by: Optional[types.OrderBy] = None, offset: Optional[types.PointId] = None, with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> tuple[list[types.Record], Optional[types.PointId]]: if self._prefer_grpc: if isinstance(offset, get_args_subscribed(models.ExtendedPointId)): offset = RestToGrpc.convert_extended_point_id(offset) if isinstance(scroll_filter, models.Filter): scroll_filter = RestToGrpc.convert_filter(model=scroll_filter) if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) if isinstance(with_vectors, get_args_subscribed(models.WithVector)): with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) if isinstance(order_by, get_args_subscribed(models.OrderByInterface)): order_by = RestToGrpc.convert_order_by_interface(order_by) res: grpc.ScrollResponse = self.grpc_points.Scroll( grpc.ScrollPoints( collection_name=collection_name, filter=scroll_filter, order_by=order_by, offset=offset, with_vectors=with_vectors, with_payload=with_payload, limit=limit, read_consistency=consistency, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ) return [GrpcToRest.convert_retrieved_point(point) for point in res.result], ( GrpcToRest.convert_point_id(res.next_page_offset) if res.HasField("next_page_offset") else None ) else: if isinstance(offset, grpc.PointId): offset = GrpcToRest.convert_point_id(offset) if isinstance(scroll_filter, grpc.Filter): scroll_filter = GrpcToRest.convert_filter(model=scroll_filter) if isinstance(order_by, grpc.OrderBy): order_by = GrpcToRest.convert_order_by(order_by) if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) scroll_result: Optional[models.ScrollResult] = ( self.openapi_client.points_api.scroll_points( collection_name=collection_name, consistency=consistency, scroll_request=models.ScrollRequest( filter=scroll_filter, limit=limit, order_by=order_by, offset=offset, with_payload=with_payload, with_vector=with_vectors, shard_key=shard_key_selector, ), timeout=timeout, ).result ) assert scroll_result is not None, "Scroll points API returned None result" return scroll_result.points, scroll_result.next_page_offset
[docs] def count( self, collection_name: str, count_filter: Optional[types.Filter] = None, exact: bool = True, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> types.CountResult: if self._prefer_grpc: if isinstance(count_filter, models.Filter): count_filter = RestToGrpc.convert_filter(model=count_filter) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) response = self.grpc_points.Count( grpc.CountPoints( collection_name=collection_name, filter=count_filter, exact=exact, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ).result return GrpcToRest.convert_count_result(response) if isinstance(count_filter, grpc.Filter): count_filter = GrpcToRest.convert_filter(model=count_filter) count_result = self.openapi_client.points_api.count_points( collection_name=collection_name, count_request=models.CountRequest( filter=count_filter, exact=exact, shard_key=shard_key_selector, ), timeout=timeout, ).result assert count_result is not None, "Count points returned None result" return count_result
[docs] def facet( self, collection_name: str, key: str, facet_filter: Optional[types.Filter] = None, limit: int = 10, exact: bool = False, timeout: Optional[int] = None, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.FacetResponse: if self._prefer_grpc: if isinstance(facet_filter, models.Filter): facet_filter = RestToGrpc.convert_filter(model=facet_filter) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) response = self.grpc_points.Facet( grpc.FacetCounts( collection_name=collection_name, key=key, filter=facet_filter, limit=limit, exact=exact, timeout=timeout, read_consistency=consistency, shard_key_selector=shard_key_selector, ), timeout=timeout if timeout is not None else self._timeout, ) return types.FacetResponse( hits=[GrpcToRest.convert_facet_value_hit(hit) for hit in response.hits] ) if isinstance(facet_filter, grpc.Filter): facet_filter = GrpcToRest.convert_filter(model=facet_filter) facet_result = self.openapi_client.points_api.facet( collection_name=collection_name, consistency=consistency, timeout=timeout, facet_request=models.FacetRequest( shard_key=shard_key_selector, key=key, limit=limit, filter=facet_filter, exact=exact, ), ).result assert facet_result is not None, "Facet points returned None result" return facet_result
[docs] def upsert( self, collection_name: str, points: types.Points, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: if isinstance(points, models.Batch): vectors_batch: list[grpc.Vectors] = RestToGrpc.convert_batch_vector_struct( points.vectors, len(points.ids) ) points = [ grpc.PointStruct( id=RestToGrpc.convert_extended_point_id(points.ids[idx]), vectors=vectors_batch[idx], payload=( RestToGrpc.convert_payload(points.payloads[idx]) if points.payloads is not None else None ), ) for idx in range(len(points.ids)) ] if isinstance(points, list): points = [ ( RestToGrpc.convert_point_struct(point) if isinstance(point, models.PointStruct) else point ) for point in points ] if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) grpc_result = self.grpc_points.Upsert( grpc.UpsertPoints( collection_name=collection_name, wait=wait, points=points, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ).result assert grpc_result is not None, "Upsert returned None result" return GrpcToRest.convert_update_result(grpc_result) else: if isinstance(points, list): points = [ ( GrpcToRest.convert_point_struct(point) if isinstance(point, grpc.PointStruct) else point ) for point in points ] points = models.PointsList(points=points, shard_key=shard_key_selector) if isinstance(points, models.Batch): points = models.PointsBatch(batch=points, shard_key=shard_key_selector) http_result = self.openapi_client.points_api.upsert_points( collection_name=collection_name, wait=wait, point_insert_operations=points, ordering=ordering, ).result assert http_result is not None, "Upsert returned None result" return http_result
[docs] def update_vectors( self, collection_name: str, points: Sequence[types.PointVectors], wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: points = [RestToGrpc.convert_point_vectors(point) for point in points] if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) grpc_result = self.grpc_points.UpdateVectors( grpc.UpdatePointVectors( collection_name=collection_name, wait=wait, points=points, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ).result assert grpc_result is not None, "Upsert returned None result" return GrpcToRest.convert_update_result(grpc_result) else: return self.openapi_client.points_api.update_vectors( collection_name=collection_name, wait=wait, update_vectors=models.UpdateVectors( points=points, shard_key=shard_key_selector, ), ordering=ordering, ).result
[docs] def delete_vectors( self, collection_name: str, vectors: Sequence[str], points: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: points_selector, opt_shard_key_selector = self._try_argument_to_grpc_selector(points) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) grpc_result = self.grpc_points.DeleteVectors( grpc.DeletePointVectors( collection_name=collection_name, wait=wait, vectors=grpc.VectorsSelector( names=vectors, ), points_selector=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ).result assert grpc_result is not None, "Delete vectors returned None result" return GrpcToRest.convert_update_result(grpc_result) else: _points, _filter = self._try_argument_to_rest_points_and_filter(points) return self.openapi_client.points_api.delete_vectors( collection_name=collection_name, wait=wait, ordering=ordering, delete_vectors=construct( models.DeleteVectors, vector=vectors, points=_points, filter=_filter, shard_key=shard_key_selector, ), ).result
[docs] def retrieve( self, collection_name: str, ids: Sequence[types.PointId], with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, consistency: Optional[types.ReadConsistency] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> list[types.Record]: if self._prefer_grpc: if isinstance(with_payload, get_args_subscribed(models.WithPayloadInterface)): with_payload = RestToGrpc.convert_with_payload_interface(with_payload) ids = [ ( RestToGrpc.convert_extended_point_id(idx) if isinstance(idx, get_args_subscribed(models.ExtendedPointId)) else idx ) for idx in ids ] with_vectors = RestToGrpc.convert_with_vectors(with_vectors) if isinstance(consistency, get_args_subscribed(models.ReadConsistency)): consistency = RestToGrpc.convert_read_consistency(consistency) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) result = self.grpc_points.Get( grpc.GetPoints( collection_name=collection_name, ids=ids, with_payload=with_payload, with_vectors=with_vectors, read_consistency=consistency, shard_key_selector=shard_key_selector, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ).result assert result is not None, "Retrieve returned None result" return [GrpcToRest.convert_retrieved_point(record) for record in result] else: if isinstance(with_payload, grpc.WithPayloadSelector): with_payload = GrpcToRest.convert_with_payload_selector(with_payload) ids = [ (GrpcToRest.convert_point_id(idx) if isinstance(idx, grpc.PointId) else idx) for idx in ids ] http_result = self.openapi_client.points_api.get_points( collection_name=collection_name, consistency=consistency, point_request=models.PointRequest( ids=ids, with_payload=with_payload, with_vector=with_vectors, shard_key=shard_key_selector, ), timeout=timeout, ).result assert http_result is not None, "Retrieve API returned None result" return http_result
@classmethod def _try_argument_to_grpc_selector( cls, points: types.PointsSelector ) -> tuple[grpc.PointsSelector, Optional[grpc.ShardKeySelector]]: shard_key_selector = None if isinstance(points, list): points_selector = grpc.PointsSelector( points=grpc.PointsIdsList( ids=[ ( RestToGrpc.convert_extended_point_id(idx) if isinstance(idx, get_args_subscribed(models.ExtendedPointId)) else idx ) for idx in points ] ) ) elif isinstance(points, grpc.PointsSelector): points_selector = points elif isinstance(points, get_args(models.PointsSelector)): if points.shard_key is not None: shard_key_selector = RestToGrpc.convert_shard_key_selector(points.shard_key) points_selector = RestToGrpc.convert_points_selector(points) elif isinstance(points, models.Filter): points_selector = RestToGrpc.convert_points_selector( construct(models.FilterSelector, filter=points) ) elif isinstance(points, grpc.Filter): points_selector = grpc.PointsSelector(filter=points) else: raise ValueError(f"Unsupported points selector type: {type(points)}") return points_selector, shard_key_selector @classmethod def _try_argument_to_rest_selector( cls, points: types.PointsSelector, shard_key_selector: Optional[types.ShardKeySelector], ) -> models.PointsSelector: if isinstance(points, list): _points = [ (GrpcToRest.convert_point_id(idx) if isinstance(idx, grpc.PointId) else idx) for idx in points ] points_selector = construct( models.PointIdsList, points=_points, shard_key=shard_key_selector, ) elif isinstance(points, grpc.PointsSelector): points_selector = GrpcToRest.convert_points_selector(points) points_selector.shard_key = shard_key_selector elif isinstance(points, get_args(models.PointsSelector)): points_selector = points points_selector.shard_key = shard_key_selector elif isinstance(points, models.Filter): points_selector = construct( models.FilterSelector, filter=points, shard_key=shard_key_selector ) elif isinstance(points, grpc.Filter): points_selector = construct( models.FilterSelector, filter=GrpcToRest.convert_filter(points), shard_key=shard_key_selector, ) else: raise ValueError(f"Unsupported points selector type: {type(points)}") return points_selector @classmethod def _points_selector_to_points_list( cls, points_selector: grpc.PointsSelector ) -> list[grpc.PointId]: name = points_selector.WhichOneof("points_selector_one_of") if name is None: return [] val = getattr(points_selector, name) if name == "points": return list(val.ids) return [] @classmethod def _try_argument_to_rest_points_and_filter( cls, points: types.PointsSelector ) -> tuple[Optional[list[models.ExtendedPointId]], Optional[models.Filter]]: _points = None _filter = None if isinstance(points, list): _points = [ (GrpcToRest.convert_point_id(idx) if isinstance(idx, grpc.PointId) else idx) for idx in points ] elif isinstance(points, grpc.PointsSelector): selector = GrpcToRest.convert_points_selector(points) if isinstance(selector, models.PointIdsList): _points = selector.points elif isinstance(selector, models.FilterSelector): _filter = selector.filter elif isinstance(points, models.PointIdsList): _points = points.points elif isinstance(points, models.FilterSelector): _filter = points.filter elif isinstance(points, models.Filter): _filter = points elif isinstance(points, grpc.Filter): _filter = GrpcToRest.convert_filter(points) else: raise ValueError(f"Unsupported points selector type: {type(points)}") return _points, _filter
[docs] def delete( self, collection_name: str, points_selector: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: points_selector, opt_shard_key_selector = self._try_argument_to_grpc_selector( points_selector ) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( self.grpc_points.Delete( grpc.DeletePoints( collection_name=collection_name, wait=wait, points=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ).result ) else: points_selector = self._try_argument_to_rest_selector( points_selector, shard_key_selector ) result: Optional[types.UpdateResult] = self.openapi_client.points_api.delete_points( collection_name=collection_name, wait=wait, points_selector=points_selector, ordering=ordering, ).result assert result is not None, "Delete points returned None" return result
[docs] def set_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, key: Optional[str] = None, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: points_selector, opt_shard_key_selector = self._try_argument_to_grpc_selector(points) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( self.grpc_points.SetPayload( grpc.SetPayloadPoints( collection_name=collection_name, wait=wait, payload=RestToGrpc.convert_payload(payload), points_selector=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, key=key, ), timeout=self._timeout, ).result ) else: _points, _filter = self._try_argument_to_rest_points_and_filter(points) result: Optional[types.UpdateResult] = self.openapi_client.points_api.set_payload( collection_name=collection_name, wait=wait, ordering=ordering, set_payload=models.SetPayload( payload=payload, points=_points, filter=_filter, shard_key=shard_key_selector, key=key, ), ).result assert result is not None, "Set payload returned None" return result
[docs] def overwrite_payload( self, collection_name: str, payload: types.Payload, points: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: points_selector, opt_shard_key_selector = self._try_argument_to_grpc_selector(points) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( self.grpc_points.OverwritePayload( grpc.SetPayloadPoints( collection_name=collection_name, wait=wait, payload=RestToGrpc.convert_payload(payload), points_selector=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ).result ) else: _points, _filter = self._try_argument_to_rest_points_and_filter(points) result: Optional[types.UpdateResult] = ( self.openapi_client.points_api.overwrite_payload( collection_name=collection_name, wait=wait, ordering=ordering, set_payload=models.SetPayload( payload=payload, points=_points, filter=_filter, shard_key=shard_key_selector, ), ).result ) assert result is not None, "Overwrite payload returned None" return result
[docs] def delete_payload( self, collection_name: str, keys: Sequence[str], points: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: points_selector, opt_shard_key_selector = self._try_argument_to_grpc_selector(points) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( self.grpc_points.DeletePayload( grpc.DeletePayloadPoints( collection_name=collection_name, wait=wait, keys=keys, points_selector=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ).result ) else: _points, _filter = self._try_argument_to_rest_points_and_filter(points) result: Optional[types.UpdateResult] = self.openapi_client.points_api.delete_payload( collection_name=collection_name, wait=wait, ordering=ordering, delete_payload=models.DeletePayload( keys=keys, points=_points, filter=_filter, shard_key=shard_key_selector, ), ).result assert result is not None, "Delete payload returned None" return result
[docs] def clear_payload( self, collection_name: str, points_selector: types.PointsSelector, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: points_selector, opt_shard_key_selector = self._try_argument_to_grpc_selector( points_selector ) shard_key_selector = shard_key_selector or opt_shard_key_selector if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) if isinstance(shard_key_selector, get_args_subscribed(models.ShardKeySelector)): shard_key_selector = RestToGrpc.convert_shard_key_selector(shard_key_selector) return GrpcToRest.convert_update_result( self.grpc_points.ClearPayload( grpc.ClearPayloadPoints( collection_name=collection_name, wait=wait, points=points_selector, ordering=ordering, shard_key_selector=shard_key_selector, ), timeout=self._timeout, ).result ) else: points_selector = self._try_argument_to_rest_selector( points_selector, shard_key_selector ) result: Optional[types.UpdateResult] = self.openapi_client.points_api.clear_payload( collection_name=collection_name, wait=wait, ordering=ordering, points_selector=points_selector, ).result assert result is not None, "Clear payload returned None" return result
[docs] def batch_update_points( self, collection_name: str, update_operations: Sequence[types.UpdateOperation], wait: bool = True, ordering: Optional[types.WriteOrdering] = None, **kwargs: Any, ) -> list[types.UpdateResult]: if self._prefer_grpc: update_operations = [ RestToGrpc.convert_update_operation(operation) for operation in update_operations ] if isinstance(ordering, models.WriteOrdering): ordering = RestToGrpc.convert_write_ordering(ordering) return [ GrpcToRest.convert_update_result(result) for result in self.grpc_points.UpdateBatch( grpc.UpdateBatchPoints( collection_name=collection_name, wait=wait, operations=update_operations, ordering=ordering, ), timeout=self._timeout, ).result ] else: result: Optional[list[types.UpdateResult]] = ( self.openapi_client.points_api.batch_update( collection_name=collection_name, wait=wait, ordering=ordering, update_operations=models.UpdateOperations(operations=update_operations), ).result ) assert result is not None, "Batch update points returned None" return result
[docs] def update_collection_aliases( self, change_aliases_operations: Sequence[types.AliasOperations], timeout: Optional[int] = None, **kwargs: Any, ) -> bool: if self._prefer_grpc: change_aliases_operation = [ ( RestToGrpc.convert_alias_operations(operation) if not isinstance(operation, grpc.AliasOperations) else operation ) for operation in change_aliases_operations ] return self.grpc_collections.UpdateAliases( grpc.ChangeAliases( timeout=timeout, actions=change_aliases_operation, ), timeout=timeout if timeout is not None else self._timeout, ).result change_aliases_operation = [ ( GrpcToRest.convert_alias_operations(operation) if isinstance(operation, grpc.AliasOperations) else operation ) for operation in change_aliases_operations ] result: Optional[bool] = self.http.aliases_api.update_aliases( timeout=timeout, change_aliases_operation=models.ChangeAliasesOperation( actions=change_aliases_operation ), ).result assert result is not None, "Update aliases returned None" return result
[docs] def get_collection_aliases( self, collection_name: str, **kwargs: Any ) -> types.CollectionsAliasesResponse: if self._prefer_grpc: response = self.grpc_collections.ListCollectionAliases( grpc.ListCollectionAliasesRequest(collection_name=collection_name), timeout=self._timeout, ).aliases return types.CollectionsAliasesResponse( aliases=[ GrpcToRest.convert_alias_description(description) for description in response ] ) result: Optional[types.CollectionsAliasesResponse] = ( self.http.aliases_api.get_collection_aliases(collection_name=collection_name).result ) assert result is not None, "Get collection aliases returned None" return result
[docs] def get_aliases(self, **kwargs: Any) -> types.CollectionsAliasesResponse: if self._prefer_grpc: response = self.grpc_collections.ListAliases( grpc.ListAliasesRequest(), timeout=self._timeout ).aliases return types.CollectionsAliasesResponse( aliases=[ GrpcToRest.convert_alias_description(description) for description in response ] ) result: Optional[types.CollectionsAliasesResponse] = ( self.http.aliases_api.get_collections_aliases().result ) assert result is not None, "Get aliases returned None" return result
[docs] def get_collections(self, **kwargs: Any) -> types.CollectionsResponse: if self._prefer_grpc: response = self.grpc_collections.List( grpc.ListCollectionsRequest(), timeout=self._timeout ).collections return types.CollectionsResponse( collections=[ GrpcToRest.convert_collection_description(description) for description in response ] ) result: Optional[types.CollectionsResponse] = ( self.http.collections_api.get_collections().result ) assert result is not None, "Get collections returned None" return result
[docs] def get_collection(self, collection_name: str, **kwargs: Any) -> types.CollectionInfo: if self._prefer_grpc: return GrpcToRest.convert_collection_info( self.grpc_collections.Get( grpc.GetCollectionInfoRequest(collection_name=collection_name), timeout=self._timeout, ).result ) result: Optional[types.CollectionInfo] = self.http.collections_api.get_collection( collection_name=collection_name ).result assert result is not None, "Get collection returned None" return result
[docs] def collection_exists(self, collection_name: str, **kwargs: Any) -> bool: if self._prefer_grpc: return self.grpc_collections.CollectionExists( grpc.CollectionExistsRequest(collection_name=collection_name), timeout=self._timeout, ).result.exists result: Optional[models.CollectionExistence] = self.http.collections_api.collection_exists( collection_name=collection_name ).result assert result is not None, "Collection exists returned None" return result.exists
[docs] def update_collection( self, collection_name: str, optimizers_config: Optional[types.OptimizersConfigDiff] = None, collection_params: Optional[types.CollectionParamsDiff] = None, vectors_config: Optional[types.VectorsConfigDiff] = None, hnsw_config: Optional[types.HnswConfigDiff] = None, quantization_config: Optional[types.QuantizationConfigDiff] = None, timeout: Optional[int] = None, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, strict_mode_config: Optional[types.StrictModeConfig] = None, **kwargs: Any, ) -> bool: if self._prefer_grpc: if isinstance(optimizers_config, models.OptimizersConfigDiff): optimizers_config = RestToGrpc.convert_optimizers_config_diff(optimizers_config) if isinstance(collection_params, models.CollectionParamsDiff): collection_params = RestToGrpc.convert_collection_params_diff(collection_params) if isinstance(vectors_config, dict): vectors_config = RestToGrpc.convert_vectors_config_diff(vectors_config) if isinstance(hnsw_config, models.HnswConfigDiff): hnsw_config = RestToGrpc.convert_hnsw_config_diff(hnsw_config) if isinstance(quantization_config, get_args(models.QuantizationConfigDiff)): quantization_config = RestToGrpc.convert_quantization_config_diff( quantization_config ) if isinstance(sparse_vectors_config, dict): sparse_vectors_config = RestToGrpc.convert_sparse_vector_config( sparse_vectors_config ) if isinstance(strict_mode_config, models.StrictModeConfig): strict_mode_config = RestToGrpc.convert_strict_mode_config(strict_mode_config) return self.grpc_collections.Update( grpc.UpdateCollection( collection_name=collection_name, optimizers_config=optimizers_config, params=collection_params, vectors_config=vectors_config, hnsw_config=hnsw_config, quantization_config=quantization_config, sparse_vectors_config=sparse_vectors_config, strict_mode_config=strict_mode_config, timeout=timeout, ), timeout=timeout if timeout is not None else self._timeout, ).result if isinstance(optimizers_config, grpc.OptimizersConfigDiff): optimizers_config = GrpcToRest.convert_optimizers_config_diff(optimizers_config) if isinstance(collection_params, grpc.CollectionParamsDiff): collection_params = GrpcToRest.convert_collection_params_diff(collection_params) if isinstance(vectors_config, grpc.VectorsConfigDiff): vectors_config = GrpcToRest.convert_vectors_config_diff(vectors_config) if isinstance(hnsw_config, grpc.HnswConfigDiff): hnsw_config = GrpcToRest.convert_hnsw_config_diff(hnsw_config) if isinstance(quantization_config, grpc.QuantizationConfigDiff): quantization_config = GrpcToRest.convert_quantization_config_diff(quantization_config) result: Optional[bool] = self.http.collections_api.update_collection( collection_name, update_collection=models.UpdateCollection( optimizers_config=optimizers_config, params=collection_params, vectors=vectors_config, hnsw_config=hnsw_config, quantization_config=quantization_config, sparse_vectors=sparse_vectors_config, strict_mode_config=strict_mode_config, ), timeout=timeout, ).result assert result is not None, "Update collection returned None" return result
[docs] def delete_collection( self, collection_name: str, timeout: Optional[int] = None, **kwargs: Any ) -> bool: if self._prefer_grpc: return self.grpc_collections.Delete( grpc.DeleteCollection(collection_name=collection_name, timeout=timeout), timeout=timeout if timeout is not None else self._timeout, ).result result: Optional[bool] = self.http.collections_api.delete_collection( collection_name, timeout=timeout ).result assert result is not None, "Delete collection returned None" return result
[docs] def create_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], shard_number: Optional[int] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[types.HnswConfigDiff] = None, optimizers_config: Optional[types.OptimizersConfigDiff] = None, wal_config: Optional[types.WalConfigDiff] = None, quantization_config: Optional[types.QuantizationConfig] = None, init_from: Optional[types.InitFrom] = None, timeout: Optional[int] = None, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, sharding_method: Optional[types.ShardingMethod] = None, strict_mode_config: Optional[types.StrictModeConfig] = None, **kwargs: Any, ) -> bool: if init_from is not None: show_warning_once( message="init_from is deprecated", category=DeprecationWarning, stacklevel=5, idx="create-collection-init-from", ) if self._prefer_grpc: if isinstance(vectors_config, (models.VectorParams, dict)): vectors_config = RestToGrpc.convert_vectors_config(vectors_config) if isinstance(hnsw_config, models.HnswConfigDiff): hnsw_config = RestToGrpc.convert_hnsw_config_diff(hnsw_config) if isinstance(optimizers_config, models.OptimizersConfigDiff): optimizers_config = RestToGrpc.convert_optimizers_config_diff(optimizers_config) if isinstance(wal_config, models.WalConfigDiff): wal_config = RestToGrpc.convert_wal_config_diff(wal_config) if isinstance( quantization_config, get_args(models.QuantizationConfig), ): quantization_config = RestToGrpc.convert_quantization_config(quantization_config) if isinstance(init_from, models.InitFrom): init_from = RestToGrpc.convert_init_from(init_from) if isinstance(sparse_vectors_config, dict): sparse_vectors_config = RestToGrpc.convert_sparse_vector_config( sparse_vectors_config ) if isinstance(sharding_method, models.ShardingMethod): sharding_method = RestToGrpc.convert_sharding_method(sharding_method) if isinstance(strict_mode_config, models.StrictModeConfig): strict_mode_config = RestToGrpc.convert_strict_mode_config(strict_mode_config) create_collection = grpc.CreateCollection( collection_name=collection_name, hnsw_config=hnsw_config, wal_config=wal_config, optimizers_config=optimizers_config, shard_number=shard_number, on_disk_payload=on_disk_payload, timeout=timeout, vectors_config=vectors_config, replication_factor=replication_factor, write_consistency_factor=write_consistency_factor, init_from_collection=init_from, quantization_config=quantization_config, sparse_vectors_config=sparse_vectors_config, sharding_method=sharding_method, strict_mode_config=strict_mode_config, ) return self.grpc_collections.Create(create_collection, timeout=self._timeout).result if isinstance(hnsw_config, grpc.HnswConfigDiff): hnsw_config = GrpcToRest.convert_hnsw_config_diff(hnsw_config) if isinstance(optimizers_config, grpc.OptimizersConfigDiff): optimizers_config = GrpcToRest.convert_optimizers_config_diff(optimizers_config) if isinstance(wal_config, grpc.WalConfigDiff): wal_config = GrpcToRest.convert_wal_config_diff(wal_config) if isinstance(quantization_config, grpc.QuantizationConfig): quantization_config = GrpcToRest.convert_quantization_config(quantization_config) if isinstance(init_from, str): init_from = GrpcToRest.convert_init_from(init_from) create_collection_request = models.CreateCollection( vectors=vectors_config, shard_number=shard_number, replication_factor=replication_factor, write_consistency_factor=write_consistency_factor, on_disk_payload=on_disk_payload, hnsw_config=hnsw_config, optimizers_config=optimizers_config, wal_config=wal_config, quantization_config=quantization_config, init_from=init_from, sparse_vectors=sparse_vectors_config, sharding_method=sharding_method, strict_mode_config=strict_mode_config, ) result: Optional[bool] = self.http.collections_api.create_collection( collection_name=collection_name, create_collection=create_collection_request, timeout=timeout, ).result assert result is not None, "Create collection returned None" return result
[docs] def recreate_collection( self, collection_name: str, vectors_config: Union[types.VectorParams, Mapping[str, types.VectorParams]], shard_number: Optional[int] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[types.HnswConfigDiff] = None, optimizers_config: Optional[types.OptimizersConfigDiff] = None, wal_config: Optional[types.WalConfigDiff] = None, quantization_config: Optional[types.QuantizationConfig] = None, init_from: Optional[types.InitFrom] = None, timeout: Optional[int] = None, sparse_vectors_config: Optional[Mapping[str, types.SparseVectorParams]] = None, sharding_method: Optional[types.ShardingMethod] = None, strict_mode_config: Optional[types.StrictModeConfig] = None, **kwargs: Any, ) -> bool: self.delete_collection(collection_name, timeout=timeout) return self.create_collection( collection_name=collection_name, vectors_config=vectors_config, shard_number=shard_number, replication_factor=replication_factor, write_consistency_factor=write_consistency_factor, on_disk_payload=on_disk_payload, hnsw_config=hnsw_config, optimizers_config=optimizers_config, wal_config=wal_config, quantization_config=quantization_config, init_from=init_from, timeout=timeout, sparse_vectors_config=sparse_vectors_config, sharding_method=sharding_method, strict_mode_config=strict_mode_config, )
@property def _updater_class(self) -> Type[BaseUploader]: if self._prefer_grpc: return GrpcBatchUploader else: return RestBatchUploader def _upload_collection( self, batches_iterator: Iterable, collection_name: str, max_retries: int, parallel: int = 1, method: Optional[str] = None, wait: bool = False, shard_key_selector: Optional[types.ShardKeySelector] = None, ) -> None: if method is not None: if method in get_all_start_methods(): start_method = method else: raise ValueError( f"Start methods {method} is not available, available methods: {get_all_start_methods()}" ) else: start_method = "forkserver" if "forkserver" in get_all_start_methods() else "spawn" if self._prefer_grpc: updater_kwargs = { "collection_name": collection_name, "host": self._host, "port": self._grpc_port, "max_retries": max_retries, "ssl": self._https, "metadata": self._grpc_headers, "wait": wait, "shard_key_selector": shard_key_selector, "options": self._grpc_options, "timeout": self._timeout, } else: updater_kwargs = { "collection_name": collection_name, "uri": self.rest_uri, "max_retries": max_retries, "wait": wait, "shard_key_selector": shard_key_selector, **self._rest_args, } if parallel == 1: updater = self._updater_class.start(**updater_kwargs) for _ in updater.process(batches_iterator): pass else: pool = ParallelWorkerPool(parallel, self._updater_class, start_method=start_method) for _ in pool.unordered_map(batches_iterator, **updater_kwargs): pass
[docs] def upload_records( self, collection_name: str, records: Iterable[types.Record], batch_size: int = 64, parallel: int = 1, method: Optional[str] = None, max_retries: int = 3, wait: bool = False, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> None: batches_iterator = self._updater_class.iterate_records_batches( records=records, batch_size=batch_size ) self._upload_collection( batches_iterator=batches_iterator, collection_name=collection_name, max_retries=max_retries, parallel=parallel, method=method, shard_key_selector=shard_key_selector, wait=wait, )
[docs] def upload_points( self, collection_name: str, points: Iterable[types.PointStruct], batch_size: int = 64, parallel: int = 1, method: Optional[str] = None, max_retries: int = 3, wait: bool = False, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> None: batches_iterator = self._updater_class.iterate_records_batches( records=points, batch_size=batch_size ) self._upload_collection( batches_iterator=batches_iterator, collection_name=collection_name, max_retries=max_retries, parallel=parallel, method=method, wait=wait, shard_key_selector=shard_key_selector, )
[docs] def upload_collection( self, collection_name: str, vectors: Union[ dict[str, types.NumpyArray], types.NumpyArray, Iterable[types.VectorStruct] ], payload: Optional[Iterable[dict[Any, Any]]] = None, ids: Optional[Iterable[types.PointId]] = None, batch_size: int = 64, parallel: int = 1, method: Optional[str] = None, max_retries: int = 3, wait: bool = False, shard_key_selector: Optional[types.ShardKeySelector] = None, **kwargs: Any, ) -> None: batches_iterator = self._updater_class.iterate_batches( vectors=vectors, payload=payload, ids=ids, batch_size=batch_size, ) self._upload_collection( batches_iterator=batches_iterator, collection_name=collection_name, max_retries=max_retries, parallel=parallel, method=method, wait=wait, shard_key_selector=shard_key_selector, )
[docs] def create_payload_index( self, collection_name: str, field_name: str, field_schema: Optional[types.PayloadSchemaType] = None, field_type: Optional[types.PayloadSchemaType] = None, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, **kwargs: Any, ) -> types.UpdateResult: if field_type is not None: show_warning_once( message="field_type is deprecated, use field_schema instead", category=DeprecationWarning, stacklevel=5, idx="payload-index-field-type", ) field_schema = field_type if self._prefer_grpc: field_index_params = None if isinstance(field_schema, models.PayloadSchemaType): field_schema = RestToGrpc.convert_payload_schema_type(field_schema) if isinstance(field_schema, int): # There are no means to distinguish grpc.PayloadSchemaType and grpc.FieldType, # as both of them are just ints # method signature assumes that grpc.PayloadSchemaType is passed, # otherwise the value will be corrupted field_schema = grpc_payload_schema_to_field_type(field_schema) if isinstance(field_schema, get_args(models.PayloadSchemaParams)): field_schema = RestToGrpc.convert_payload_schema_params(field_schema) if isinstance(field_schema, grpc.PayloadIndexParams): field_index_params = field_schema name = field_index_params.WhichOneof("index_params") index_params = getattr(field_index_params, name) if isinstance(index_params, grpc.TextIndexParams): field_schema = grpc.FieldType.FieldTypeText if isinstance(index_params, grpc.IntegerIndexParams): field_schema = grpc.FieldType.FieldTypeInteger if isinstance(index_params, grpc.KeywordIndexParams): field_schema = grpc.FieldType.FieldTypeKeyword if isinstance(index_params, grpc.FloatIndexParams): field_schema = grpc.FieldType.FieldTypeFloat if isinstance(index_params, grpc.GeoIndexParams): field_schema = grpc.FieldType.FieldTypeGeo if isinstance(index_params, grpc.BoolIndexParams): field_schema = grpc.FieldType.FieldTypeBool if isinstance(index_params, grpc.DatetimeIndexParams): field_schema = grpc.FieldType.FieldTypeDatetime if isinstance(index_params, grpc.UuidIndexParams): field_schema = grpc.FieldType.FieldTypeUuid request = grpc.CreateFieldIndexCollection( collection_name=collection_name, field_name=field_name, field_type=field_schema, field_index_params=field_index_params, wait=wait, ordering=ordering, ) return GrpcToRest.convert_update_result( self.grpc_points.CreateFieldIndex(request, timeout=self._timeout).result ) if isinstance(field_schema, int): # type(grpc.PayloadSchemaType) == int field_schema = GrpcToRest.convert_payload_schema_type(field_schema) if isinstance(field_schema, grpc.PayloadIndexParams): field_schema = GrpcToRest.convert_payload_schema_params(field_schema) result: Optional[types.UpdateResult] = self.openapi_client.indexes_api.create_field_index( collection_name=collection_name, create_field_index=models.CreateFieldIndex( field_name=field_name, field_schema=field_schema ), wait=wait, ordering=ordering, ).result assert result is not None, "Create field index returned None" return result
[docs] def delete_payload_index( self, collection_name: str, field_name: str, wait: bool = True, ordering: Optional[types.WriteOrdering] = None, **kwargs: Any, ) -> types.UpdateResult: if self._prefer_grpc: request = grpc.DeleteFieldIndexCollection( collection_name=collection_name, field_name=field_name, wait=wait, ordering=ordering, ) return GrpcToRest.convert_update_result( self.grpc_points.DeleteFieldIndex(request, timeout=self._timeout).result ) result: Optional[types.UpdateResult] = self.openapi_client.indexes_api.delete_field_index( collection_name=collection_name, field_name=field_name, wait=wait, ordering=ordering, ).result assert result is not None, "Delete field index returned None" return result
[docs] def list_snapshots( self, collection_name: str, **kwargs: Any ) -> list[types.SnapshotDescription]: if self._prefer_grpc: snapshots = self.grpc_snapshots.List( grpc.ListSnapshotsRequest(collection_name=collection_name), timeout=self._timeout ).snapshot_descriptions return [GrpcToRest.convert_snapshot_description(snapshot) for snapshot in snapshots] snapshots = self.openapi_client.snapshots_api.list_snapshots( collection_name=collection_name ).result assert snapshots is not None, "List snapshots API returned None result" return snapshots
[docs] def create_snapshot( self, collection_name: str, wait: bool = True, **kwargs: Any ) -> Optional[types.SnapshotDescription]: if self._prefer_grpc: snapshot = self.grpc_snapshots.Create( grpc.CreateSnapshotRequest(collection_name=collection_name), timeout=self._timeout ).snapshot_description return GrpcToRest.convert_snapshot_description(snapshot) return self.openapi_client.snapshots_api.create_snapshot( collection_name=collection_name, wait=wait ).result
[docs] def delete_snapshot( self, collection_name: str, snapshot_name: str, wait: bool = True, **kwargs: Any ) -> Optional[bool]: if self._prefer_grpc: self.grpc_snapshots.Delete( grpc.DeleteSnapshotRequest( collection_name=collection_name, snapshot_name=snapshot_name ), timeout=self._timeout, ) return True return self.openapi_client.snapshots_api.delete_snapshot( collection_name=collection_name, snapshot_name=snapshot_name, wait=wait, ).result
[docs] def list_full_snapshots(self, **kwargs: Any) -> list[types.SnapshotDescription]: if self._prefer_grpc: snapshots = self.grpc_snapshots.ListFull( grpc.ListFullSnapshotsRequest(), timeout=self._timeout, ).snapshot_descriptions return [GrpcToRest.convert_snapshot_description(snapshot) for snapshot in snapshots] snapshots = self.openapi_client.snapshots_api.list_full_snapshots().result assert snapshots is not None, "List full snapshots API returned None result" return snapshots
[docs] def create_full_snapshot(self, wait: bool = True, **kwargs: Any) -> types.SnapshotDescription: if self._prefer_grpc: snapshot_description = self.grpc_snapshots.CreateFull( grpc.CreateFullSnapshotRequest(), timeout=self._timeout ).snapshot_description return GrpcToRest.convert_snapshot_description(snapshot_description) return self.openapi_client.snapshots_api.create_full_snapshot(wait=wait).result
[docs] def delete_full_snapshot( self, snapshot_name: str, wait: bool = True, **kwargs: Any ) -> Optional[bool]: if self._prefer_grpc: self.grpc_snapshots.DeleteFull( grpc.DeleteFullSnapshotRequest(snapshot_name=snapshot_name), timeout=self._timeout, ) return True return self.openapi_client.snapshots_api.delete_full_snapshot( snapshot_name=snapshot_name, wait=wait ).result
[docs] def recover_snapshot( self, collection_name: str, location: str, api_key: Optional[str] = None, checksum: Optional[str] = None, priority: Optional[types.SnapshotPriority] = None, wait: bool = True, **kwargs: Any, ) -> Optional[bool]: return self.openapi_client.snapshots_api.recover_from_snapshot( collection_name=collection_name, wait=wait, snapshot_recover=models.SnapshotRecover( location=location, priority=priority, checksum=checksum, api_key=api_key, ), ).result
[docs] def list_shard_snapshots( self, collection_name: str, shard_id: int, **kwargs: Any ) -> list[types.SnapshotDescription]: snapshots = self.openapi_client.snapshots_api.list_shard_snapshots( collection_name=collection_name, shard_id=shard_id, ).result assert snapshots is not None, "List snapshots API returned None result" return snapshots
[docs] def create_shard_snapshot( self, collection_name: str, shard_id: int, wait: bool = True, **kwargs: Any ) -> Optional[types.SnapshotDescription]: return self.openapi_client.snapshots_api.create_shard_snapshot( collection_name=collection_name, shard_id=shard_id, wait=wait, ).result
[docs] def delete_shard_snapshot( self, collection_name: str, shard_id: int, snapshot_name: str, wait: bool = True, **kwargs: Any, ) -> Optional[bool]: return self.openapi_client.snapshots_api.delete_shard_snapshot( collection_name=collection_name, shard_id=shard_id, snapshot_name=snapshot_name, wait=wait, ).result
[docs] def recover_shard_snapshot( self, collection_name: str, shard_id: int, location: str, api_key: Optional[str] = None, checksum: Optional[str] = None, priority: Optional[types.SnapshotPriority] = None, wait: bool = True, **kwargs: Any, ) -> Optional[bool]: return self.openapi_client.snapshots_api.recover_shard_from_snapshot( collection_name=collection_name, shard_id=shard_id, wait=wait, shard_snapshot_recover=models.ShardSnapshotRecover( location=location, priority=priority, checksum=checksum, api_key=api_key, ), ).result
[docs] def lock_storage(self, reason: str, **kwargs: Any) -> types.LocksOption: result: Optional[types.LocksOption] = self.openapi_client.service_api.post_locks( models.LocksOption(error_message=reason, write=True) ).result assert result is not None, "Lock storage returned None" return result
[docs] def unlock_storage(self, **kwargs: Any) -> types.LocksOption: result: Optional[types.LocksOption] = self.openapi_client.service_api.post_locks( models.LocksOption(write=False) ).result assert result is not None, "Post locks returned None" return result
[docs] def get_locks(self, **kwargs: Any) -> types.LocksOption: result: Optional[types.LocksOption] = self.openapi_client.service_api.get_locks().result assert result is not None, "Get locks returned None" return result
[docs] def create_shard_key( self, collection_name: str, shard_key: types.ShardKey, shards_number: Optional[int] = None, replication_factor: Optional[int] = None, placement: Optional[list[int]] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> bool: if self._prefer_grpc: if isinstance(shard_key, get_args_subscribed(models.ShardKey)): shard_key = RestToGrpc.convert_shard_key(shard_key) return self.grpc_collections.CreateShardKey( grpc.CreateShardKeyRequest( collection_name=collection_name, timeout=timeout, request=grpc.CreateShardKey( shard_key=shard_key, shards_number=shards_number, replication_factor=replication_factor, placement=placement or [], ), ), timeout=timeout if timeout is not None else self._timeout, ).result else: result = self.openapi_client.distributed_api.create_shard_key( collection_name=collection_name, timeout=timeout, create_sharding_key=models.CreateShardingKey( shard_key=shard_key, shards_number=shards_number, replication_factor=replication_factor, placement=placement, ), ).result assert result is not None, "Create shard key returned None" return result
[docs] def delete_shard_key( self, collection_name: str, shard_key: types.ShardKey, timeout: Optional[int] = None, **kwargs: Any, ) -> bool: if self._prefer_grpc: if isinstance(shard_key, get_args_subscribed(models.ShardKey)): shard_key = RestToGrpc.convert_shard_key(shard_key) return self.grpc_collections.DeleteShardKey( grpc.DeleteShardKeyRequest( collection_name=collection_name, timeout=timeout, request=grpc.DeleteShardKey( shard_key=shard_key, ), ), timeout=timeout if timeout is not None else self._timeout, ).result else: result = self.openapi_client.distributed_api.delete_shard_key( collection_name=collection_name, timeout=timeout, drop_sharding_key=models.DropShardingKey( shard_key=shard_key, ), ).result assert result is not None, "Delete shard key returned None" return result
[docs] def info(self) -> types.VersionInfo: if self._prefer_grpc: version_info = self.grpc_root.HealthCheck( grpc.HealthCheckRequest(), timeout=self._timeout ) return GrpcToRest.convert_health_check_reply(version_info) version_info = self.rest.service_api.root() assert version_info is not None, "Healthcheck returned None" return version_info

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community