Shortcuts

qdrant_client.fastembed_common module

class QueryResponse(*, id: Union[str, int], embedding: Optional[list[float]], sparse_embedding: Optional[SparseVector] = None, metadata: dict[str, Any], document: str, score: float)[source]

Bases: BaseModel

document: str
embedding: Optional[list[float]]
id: Union[str, int]
metadata: dict[str, Any]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

score: float
sparse_embedding: Optional[SparseVector]

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community