• Docs >
  • qdrant_client.http.models.models module
Shortcuts

qdrant_client.http.models.models module

class AbortReshardingOperation(*, abort_resharding: Any)[source]

Bases: BaseModel

abort_resharding: Any
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class AbortShardTransfer(*, shard_id: int, to_peer_id: int, from_peer_id: int)[source]

Bases: BaseModel

from_peer_id: int
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_id: int
to_peer_id: int
class AbortTransferOperation(*, abort_transfer: AbortShardTransfer)[source]

Bases: BaseModel

abort_transfer: AbortShardTransfer
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class AliasDescription(*, alias_name: str, collection_name: str)[source]

Bases: BaseModel

alias_name: str
collection_name: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class AppBuildTelemetry(*, name: str, version: str, features: Optional[AppFeaturesTelemetry] = None, system: Optional[RunningEnvironmentTelemetry] = None, jwt_rbac: Optional[bool] = None, hide_jwt_dashboard: Optional[bool] = None, startup: Union[datetime, date])[source]

Bases: BaseModel

features: Optional[AppFeaturesTelemetry]
hide_jwt_dashboard: Optional[bool]
jwt_rbac: Optional[bool]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
startup: Union[datetime, date]
system: Optional[RunningEnvironmentTelemetry]
version: str
class AppFeaturesTelemetry(*, debug: bool, web_feature: bool, service_debug_feature: bool, recovery_mode: bool, gpu: bool)[source]

Bases: BaseModel

debug: bool
gpu: bool
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

recovery_mode: bool
service_debug_feature: bool
web_feature: bool
class Batch(*, ids: List[Union[int, str]], vectors: Union[List[List[float]], List[List[List[float]]], Dict[str, List[Union[List[float], SparseVector, List[List[float]], Document, Image, InferenceObject]]], List[Document], List[Image], List[InferenceObject]], payloads: Optional[List[Dict[str, Any]]] = None)[source]

Bases: BaseModel

ids: List[ExtendedPointId]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

payloads: Optional[List[Payload]]
vectors: BatchVectorStruct
class BinaryQuantization(*, binary: BinaryQuantizationConfig)[source]

Bases: BaseModel

binary: BinaryQuantizationConfig
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class BinaryQuantizationConfig(*, always_ram: Optional[bool] = None)[source]

Bases: BaseModel

always_ram: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class BoolIndexParams(*, type: BoolIndexType, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
type: BoolIndexType
class BoolIndexType(value)[source]

Bases: str, Enum

An enumeration.

BOOL = 'bool'
class ChangeAliasesOperation(*, actions: List[Union[CreateAliasOperation, DeleteAliasOperation, RenameAliasOperation]])[source]

Bases: BaseModel

Operation for performing changes of collection aliases. Alias changes are atomic, meaning that no collection modifications can happen between alias operations.

actions: List[AliasOperations]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ClearPayloadOperation(*, clear_payload: Union[PointIdsList, FilterSelector])[source]

Bases: BaseModel

clear_payload: PointsSelector
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ClusterConfigTelemetry(*, grpc_timeout_ms: int, p2p: P2pConfigTelemetry, consensus: ConsensusConfigTelemetry)[source]

Bases: BaseModel

consensus: ConsensusConfigTelemetry
grpc_timeout_ms: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

p2p: P2pConfigTelemetry
class ClusterStatusOneOf(*, status: Literal['disabled'])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

status: Literal['disabled']
class ClusterStatusOneOf1(*, status: Literal['enabled'], peer_id: int, peers: Dict[str, PeerInfo], raft_info: RaftInfo, consensus_thread_status: Union[ConsensusThreadStatusOneOf, ConsensusThreadStatusOneOf1, ConsensusThreadStatusOneOf2], message_send_failures: Dict[str, MessageSendErrors])[source]

Bases: BaseModel

Description of enabled cluster

consensus_thread_status: ConsensusThreadStatus
message_send_failures: Dict[str, MessageSendErrors]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

peer_id: int
peers: Dict[str, PeerInfo]
raft_info: RaftInfo
status: Literal['enabled']
class ClusterStatusTelemetry(*, number_of_peers: int, term: int, commit: int, pending_operations: int, role: Optional[StateRole] = None, is_voter: bool, peer_id: Optional[int] = None, consensus_thread_status: Union[ConsensusThreadStatusOneOf, ConsensusThreadStatusOneOf1, ConsensusThreadStatusOneOf2])[source]

Bases: BaseModel

commit: int
consensus_thread_status: ConsensusThreadStatus
is_voter: bool
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

number_of_peers: int
peer_id: Optional[int]
pending_operations: int
role: Optional[StateRole]
term: int
class ClusterTelemetry(*, enabled: bool, status: Optional[ClusterStatusTelemetry] = None, config: Optional[ClusterConfigTelemetry] = None, peers: Optional[Dict[str, PeerInfo]] = None, metadata: Optional[Dict[str, Any]] = None)[source]

Bases: BaseModel

config: Optional[ClusterConfigTelemetry]
enabled: bool
metadata: Optional[Dict[str, Any]]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

peers: Optional[Dict[str, PeerInfo]]
status: Optional[ClusterStatusTelemetry]
class CollectionClusterInfo(*, peer_id: int, shard_count: int, local_shards: List[LocalShardInfo], remote_shards: List[RemoteShardInfo], shard_transfers: List[ShardTransferInfo], resharding_operations: Optional[List[ReshardingInfo]] = None)[source]

Bases: BaseModel

Current clustering distribution for the collection

local_shards: List[LocalShardInfo]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

peer_id: int
remote_shards: List[RemoteShardInfo]
resharding_operations: Optional[List[ReshardingInfo]]
shard_count: int
shard_transfers: List[ShardTransferInfo]
class CollectionConfig(*, params: CollectionParams, hnsw_config: HnswConfig, optimizer_config: OptimizersConfig, wal_config: Optional[WalConfig] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, strict_mode_config: Optional[StrictModeConfig] = None)[source]

Bases: BaseModel

Information about the collection configuration

hnsw_config: HnswConfig
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

optimizer_config: OptimizersConfig
params: CollectionParams
quantization_config: Optional[QuantizationConfig]
strict_mode_config: Optional[StrictModeConfig]
wal_config: Optional[WalConfig]
class CollectionConfigInternal(*, params: CollectionParams, hnsw_config: HnswConfig, optimizer_config: OptimizersConfig, wal_config: WalConfig, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, strict_mode_config: Optional[StrictModeConfig] = None, uuid: Optional[UUID] = None)[source]

Bases: BaseModel

hnsw_config: HnswConfig
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

optimizer_config: OptimizersConfig
params: CollectionParams
quantization_config: Optional[QuantizationConfig]
strict_mode_config: Optional[StrictModeConfig]
uuid: Optional[UUID]
wal_config: WalConfig
class CollectionDescription(*, name: str)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
class CollectionExistence(*, exists: bool)[source]

Bases: BaseModel

State of existence of a collection, true = exists, false = does not exist

exists: bool
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class CollectionInfo(*, status: CollectionStatus, optimizer_status: Union[OptimizersStatusOneOf, OptimizersStatusOneOf1], vectors_count: Optional[int] = None, indexed_vectors_count: Optional[int] = None, points_count: Optional[int] = None, segments_count: int, config: CollectionConfig, payload_schema: Dict[str, PayloadIndexInfo])[source]

Bases: BaseModel

Current statistics and configuration of the collection

config: CollectionConfig
indexed_vectors_count: Optional[int]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

optimizer_status: OptimizersStatus
payload_schema: Dict[str, PayloadIndexInfo]
points_count: Optional[int]
segments_count: int
status: CollectionStatus
vectors_count: Optional[int]
class CollectionParams(*, vectors: Optional[Union[VectorParams, Dict[str, VectorParams]]] = None, shard_number: Optional[int] = 1, sharding_method: Optional[ShardingMethod] = None, replication_factor: Optional[int] = 1, write_consistency_factor: Optional[int] = 1, read_fan_out_factor: Optional[int] = None, on_disk_payload: Optional[bool] = True, sparse_vectors: Optional[Dict[str, SparseVectorParams]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk_payload: Optional[bool]
read_fan_out_factor: Optional[int]
replication_factor: Optional[int]
shard_number: Optional[int]
sharding_method: Optional[ShardingMethod]
sparse_vectors: Optional[Dict[str, SparseVectorParams]]
vectors: Optional[VectorsConfig]
write_consistency_factor: Optional[int]
class CollectionParamsDiff(*, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, read_fan_out_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk_payload: Optional[bool]
read_fan_out_factor: Optional[int]
replication_factor: Optional[int]
write_consistency_factor: Optional[int]
class CollectionStatus(value)[source]

Bases: str, Enum

Current state of the collection. Green - all good. Yellow - optimization is running, 'Grey' - optimizations are possible but not triggered, Red - some operations failed and was not recovered

GREEN = 'green'
GREY = 'grey'
RED = 'red'
YELLOW = 'yellow'
class CollectionTelemetry(*, id: str, init_time_ms: int, config: CollectionConfigInternal, shards: List[ReplicaSetTelemetry], transfers: List[ShardTransferInfo], resharding: List[ReshardingInfo], shard_clean_tasks: Dict[str, Union[ShardCleanStatusTelemetryOneOf, ShardCleanStatusTelemetryOneOf1, ShardCleanStatusTelemetryOneOf2]])[source]

Bases: BaseModel

config: CollectionConfigInternal
id: str
init_time_ms: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

resharding: List[ReshardingInfo]
shard_clean_tasks: Dict[str, ShardCleanStatusTelemetry]
shards: List[ReplicaSetTelemetry]
transfers: List[ShardTransferInfo]
class CollectionsAggregatedTelemetry(*, vectors: int, optimizers_status: Union[OptimizersStatusOneOf, OptimizersStatusOneOf1], params: CollectionParams)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

optimizers_status: OptimizersStatus
params: CollectionParams
vectors: int
class CollectionsAliasesResponse(*, aliases: List[AliasDescription])[source]

Bases: BaseModel

aliases: List[AliasDescription]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class CollectionsResponse(*, collections: List[CollectionDescription])[source]

Bases: BaseModel

collections: List[CollectionDescription]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class CollectionsTelemetry(*, number_of_collections: int, collections: Optional[List[Union[CollectionTelemetry, CollectionsAggregatedTelemetry]]] = None)[source]

Bases: BaseModel

collections: Optional[List[CollectionTelemetryEnum]]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

number_of_collections: int
class CompressionRatio(value)[source]

Bases: str, Enum

An enumeration.

X16 = 'x16'
X32 = 'x32'
X4 = 'x4'
X64 = 'x64'
X8 = 'x8'
class ConsensusConfigTelemetry(*, max_message_queue_size: int, tick_period_ms: int, bootstrap_timeout_sec: int)[source]

Bases: BaseModel

bootstrap_timeout_sec: int
max_message_queue_size: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

tick_period_ms: int
class ConsensusThreadStatusOneOf(*, consensus_thread_status: Literal['working'], last_update: Union[datetime, date])[source]

Bases: BaseModel

consensus_thread_status: Literal['working']
last_update: Union[datetime, date]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ConsensusThreadStatusOneOf1(*, consensus_thread_status: Literal['stopped'])[source]

Bases: BaseModel

consensus_thread_status: Literal['stopped']
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ConsensusThreadStatusOneOf2(*, consensus_thread_status: Literal['stopped_with_err'], err: str)[source]

Bases: BaseModel

consensus_thread_status: Literal['stopped_with_err']
err: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ContextExamplePair(*, positive: Union[int, str, List[float], SparseVector], negative: Union[int, str, List[float], SparseVector])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

negative: RecommendExample
positive: RecommendExample
class ContextPair(*, positive: Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject], negative: Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

negative: VectorInput
positive: VectorInput
class ContextQuery(*, context: Union[ContextPair, List[ContextPair]])[source]

Bases: BaseModel

context: ContextInput
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class CountRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, filter: Optional[Filter] = None, exact: Optional[bool] = True)[source]

Bases: BaseModel

Count Request Counts the number of points which satisfy the given filter. If filter is not provided, the count of all points in the collection will be returned.

exact: Optional[bool]
filter: Optional[Filter]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_key: Optional[ShardKeySelector]
class CountResult(*, count: int)[source]

Bases: BaseModel

count: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class CpuEndian(value)[source]

Bases: str, Enum

An enumeration.

BIG = 'big'
LITTLE = 'little'
OTHER = 'other'
class CreateAlias(*, collection_name: str, alias_name: str)[source]

Bases: BaseModel

Create alternative name for a collection. Collection will be available under both names for search, retrieve,

alias_name: str
collection_name: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class CreateAliasOperation(*, create_alias: CreateAlias)[source]

Bases: BaseModel

create_alias: CreateAlias
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class CreateCollection(*, vectors: Optional[Union[VectorParams, Dict[str, VectorParams]]] = None, shard_number: Optional[int] = None, sharding_method: Optional[ShardingMethod] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[HnswConfigDiff] = None, wal_config: Optional[WalConfigDiff] = None, optimizers_config: Optional[OptimizersConfigDiff] = None, init_from: Optional[InitFrom] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, sparse_vectors: Optional[Dict[str, SparseVectorParams]] = None, strict_mode_config: Optional[StrictModeConfig] = None)[source]

Bases: BaseModel

Operation for creating new collection and (optionally) specify index params

hnsw_config: Optional[HnswConfigDiff]
init_from: Optional[InitFrom]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk_payload: Optional[bool]
optimizers_config: Optional[OptimizersConfigDiff]
quantization_config: Optional[QuantizationConfig]
replication_factor: Optional[int]
shard_number: Optional[int]
sharding_method: Optional[ShardingMethod]
sparse_vectors: Optional[Dict[str, SparseVectorParams]]
strict_mode_config: Optional[StrictModeConfig]
vectors: Optional[VectorsConfig]
wal_config: Optional[WalConfigDiff]
write_consistency_factor: Optional[int]
class CreateFieldIndex(*, field_name: str, field_schema: Optional[Union[PayloadSchemaType, KeywordIndexParams, IntegerIndexParams, FloatIndexParams, GeoIndexParams, TextIndexParams, BoolIndexParams, DatetimeIndexParams, UuidIndexParams]] = None)[source]

Bases: BaseModel

field_name: str
field_schema: Optional[PayloadFieldSchema]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class CreateShardingKey(*, shard_key: Union[int, str], shards_number: Optional[int] = None, replication_factor: Optional[int] = None, placement: Optional[List[int]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

placement: Optional[List[int]]
replication_factor: Optional[int]
shard_key: ShardKey
shards_number: Optional[int]
class CreateShardingKeyOperation(*, create_sharding_key: CreateShardingKey)[source]

Bases: BaseModel

create_sharding_key: CreateShardingKey
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class Datatype(value)[source]

Bases: str, Enum

An enumeration.

FLOAT16 = 'float16'
FLOAT32 = 'float32'
UINT8 = 'uint8'
class DatetimeIndexParams(*, type: DatetimeIndexType, is_principal: Optional[bool] = None, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

is_principal: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
type: DatetimeIndexType
class DatetimeIndexType(value)[source]

Bases: str, Enum

An enumeration.

DATETIME = 'datetime'
class DatetimeRange(*, lt: Optional[Union[datetime, date]] = None, gt: Optional[Union[datetime, date]] = None, gte: Optional[Union[datetime, date]] = None, lte: Optional[Union[datetime, date]] = None)[source]

Bases: BaseModel

Range filter request

gt: Optional[Union[datetime, date]]
gte: Optional[Union[datetime, date]]
lt: Optional[Union[datetime, date]]
lte: Optional[Union[datetime, date]]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class DeleteAlias(*, alias_name: str)[source]

Bases: BaseModel

Delete alias if exists

alias_name: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class DeleteAliasOperation(*, delete_alias: DeleteAlias)[source]

Bases: BaseModel

Delete alias if exists

delete_alias: DeleteAlias
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class DeleteOperation(*, delete: Union[PointIdsList, FilterSelector])[source]

Bases: BaseModel

delete: PointsSelector
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class DeletePayload(*, keys: List[str], points: Optional[List[Union[int, str]]] = None, filter: Optional[Filter] = None, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]

Bases: BaseModel

This data structure is used in API interface and applied across multiple shards

filter: Optional[Filter]
keys: List[str]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points: Optional[List[ExtendedPointId]]
shard_key: Optional[ShardKeySelector]
class DeletePayloadOperation(*, delete_payload: DeletePayload)[source]

Bases: BaseModel

delete_payload: DeletePayload
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class DeleteVectors(*, points: Optional[List[Union[int, str]]] = None, filter: Optional[Filter] = None, vector: List[str], shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]

Bases: BaseModel

filter: Optional[Filter]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points: Optional[List[ExtendedPointId]]
shard_key: Optional[ShardKeySelector]
vector: List[str]
class DeleteVectorsOperation(*, delete_vectors: DeleteVectors)[source]

Bases: BaseModel

delete_vectors: DeleteVectors
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class Direction(value)[source]

Bases: str, Enum

An enumeration.

ASC = 'asc'
DESC = 'desc'
class Disabled(value)[source]

Bases: str, Enum

An enumeration.

DISABLED = 'Disabled'
class DiscoverInput(*, target: Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject], context: Union[List[ContextPair], ContextPair])[source]

Bases: BaseModel

context: Union[List[ContextPair], ContextPair]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

target: VectorInput
class DiscoverQuery(*, discover: DiscoverInput)[source]

Bases: BaseModel

discover: DiscoverInput
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class DiscoverRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, target: Optional[Union[int, str, List[float], SparseVector]] = None, context: Optional[List[ContextExamplePair]] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, limit: int, offset: Optional[int] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, using: Optional[str] = None, lookup_from: Optional[LookupLocation] = None)[source]

Bases: BaseModel

Use context and a target to find the most similar points, constrained by the context.

context: Optional[List[ContextExamplePair]]
filter: Optional[Filter]
limit: int
lookup_from: Optional[LookupLocation]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

offset: Optional[int]
params: Optional[SearchParams]
shard_key: Optional[ShardKeySelector]
target: Optional[RecommendExample]
using: Optional[UsingVector]
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class DiscoverRequestBatch(*, searches: List[DiscoverRequest])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

searches: List[DiscoverRequest]
class Distance(value)[source]

Bases: str, Enum

Type of internal tags, build from payload Distance function types used to compare vectors

COSINE = 'Cosine'
DOT = 'Dot'
EUCLID = 'Euclid'
MANHATTAN = 'Manhattan'
class Document(*, text: str, model: str, options: Optional[Dict[str, Any]] = None)[source]

Bases: BaseModel

WARN: Work-in-progress, unimplemented Text document for embedding. Requires inference infrastructure, unimplemented.

model: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

options: Optional[Dict[str, Any]]
text: str
class DropReplicaOperation(*, drop_replica: Replica)[source]

Bases: BaseModel

drop_replica: Replica
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class DropShardingKey(*, shard_key: Union[int, str])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_key: ShardKey
class DropShardingKeyOperation(*, drop_sharding_key: DropShardingKey)[source]

Bases: BaseModel

drop_sharding_key: DropShardingKey
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ErrorResponse(*, time: Optional[float] = None, status: Optional[ErrorResponseStatus] = None, result: Optional[Any] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[Any]
status: Optional[ErrorResponseStatus]
time: Optional[float]
class ErrorResponseStatus(*, error: Optional[str] = None)[source]

Bases: BaseModel

error: Optional[str]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class FacetRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, key: str, limit: Optional[int] = None, filter: Optional[Filter] = None, exact: Optional[bool] = None)[source]

Bases: BaseModel

exact: Optional[bool]
filter: Optional[Filter]
key: str
limit: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_key: Optional[ShardKeySelector]
class FacetResponse(*, hits: List[FacetValueHit])[source]

Bases: BaseModel

hits: List[FacetValueHit]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class FacetValueHit(*, value: Union[bool, int, str], count: int)[source]

Bases: BaseModel

count: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

value: FacetValue
class FieldCondition(*, key: str, match: Optional[Union[MatchValue, MatchText, MatchAny, MatchExcept]] = None, range: Optional[Union[Range, DatetimeRange]] = None, geo_bounding_box: Optional[GeoBoundingBox] = None, geo_radius: Optional[GeoRadius] = None, geo_polygon: Optional[GeoPolygon] = None, values_count: Optional[ValuesCount] = None)[source]

Bases: BaseModel

All possible payload filtering conditions

geo_bounding_box: Optional[GeoBoundingBox]
geo_polygon: Optional[GeoPolygon]
geo_radius: Optional[GeoRadius]
key: str
match: Optional[Match]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

range: Optional[RangeInterface]
values_count: Optional[ValuesCount]
class Filter(*, should: Optional[Union[List[Union[FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]], FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]] = None, min_should: Optional[MinShould] = None, must: Optional[Union[List[Union[FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]], FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]] = None, must_not: Optional[Union[List[Union[FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]], FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]] = None)[source]

Bases: BaseModel

min_should: Optional[MinShould]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

must: Optional[Union[List[Condition], Condition]]
must_not: Optional[Union[List[Condition], Condition]]
should: Optional[Union[List[Condition], Condition]]
class FilterSelector(*, filter: Filter, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]

Bases: BaseModel

filter: Filter
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_key: Optional[ShardKeySelector]
class FloatIndexParams(*, type: FloatIndexType, is_principal: Optional[bool] = None, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

is_principal: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
type: FloatIndexType
class FloatIndexType(value)[source]

Bases: str, Enum

An enumeration.

FLOAT = 'float'
class Fusion(value)[source]

Bases: str, Enum

Fusion algorithm allows to combine results of multiple prefetches. Available fusion algorithms: * rrf - Reciprocal Rank Fusion * dbsf - Distribution-Based Score Fusion

DBSF = 'dbsf'
RRF = 'rrf'
class FusionQuery(*, fusion: Fusion)[source]

Bases: BaseModel

fusion: Fusion
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class GeoBoundingBox(*, top_left: GeoPoint, bottom_right: GeoPoint)[source]

Bases: BaseModel

Geo filter request Matches coordinates inside the rectangle, described by coordinates of lop-left and bottom-right edges

bottom_right: GeoPoint
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

top_left: GeoPoint
class GeoIndexParams(*, type: GeoIndexType, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
type: GeoIndexType
class GeoIndexType(value)[source]

Bases: str, Enum

An enumeration.

GEO = 'geo'
class GeoLineString(*, points: List[GeoPoint])[source]

Bases: BaseModel

Ordered sequence of GeoPoints representing the line

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points: List[GeoPoint]
class GeoPoint(*, lon: float, lat: float)[source]

Bases: BaseModel

Geo point payload schema

lat: float
lon: float
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class GeoPolygon(*, exterior: GeoLineString, interiors: Optional[List[GeoLineString]] = None)[source]

Bases: BaseModel

Geo filter request Matches coordinates inside the polygon, defined by exterior and interiors

exterior: GeoLineString
interiors: Optional[List[GeoLineString]]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class GeoRadius(*, center: GeoPoint, radius: float)[source]

Bases: BaseModel

Geo filter request Matches coordinates inside the circle of radius and center with coordinates center

center: GeoPoint
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

radius: float
class GpuDeviceTelemetry(*, name: str)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
class GroupsResult(*, groups: List[PointGroup])[source]

Bases: BaseModel

groups: List[PointGroup]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class GrpcTelemetry(*, responses: Dict[str, OperationDurationStatistics])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

responses: Dict[str, OperationDurationStatistics]
class HardwareTelemetry(*, collection_data: Dict[str, HardwareUsage])[source]

Bases: BaseModel

collection_data: Dict[str, HardwareUsage]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class HardwareUsage(*, cpu: int, io_read: int, io_write: int)[source]

Bases: BaseModel

Usage of the hardware resources, spent to process the request

cpu: int
io_read: int
io_write: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class HasIdCondition(*, has_id: List[Union[int, str]])[source]

Bases: BaseModel

ID-based filtering condition

has_id: List[ExtendedPointId]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class HasVectorCondition(*, has_vector: str)[source]

Bases: BaseModel

Filter points which have specific vector assigned

has_vector: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class HnswConfig(*, m: int, ef_construct: int, full_scan_threshold: int, max_indexing_threads: Optional[int] = 0, on_disk: Optional[bool] = None, payload_m: Optional[int] = None)[source]

Bases: BaseModel

Config of HNSW index

ef_construct: int
full_scan_threshold: int
m: int
max_indexing_threads: Optional[int]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
payload_m: Optional[int]
class HnswConfigDiff(*, m: Optional[int] = None, ef_construct: Optional[int] = None, full_scan_threshold: Optional[int] = None, max_indexing_threads: Optional[int] = None, on_disk: Optional[bool] = None, payload_m: Optional[int] = None)[source]

Bases: BaseModel

ef_construct: Optional[int]
full_scan_threshold: Optional[int]
m: Optional[int]
max_indexing_threads: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
payload_m: Optional[int]
class Image(*, image: Any, model: str, options: Optional[Dict[str, Any]] = None)[source]

Bases: BaseModel

WARN: Work-in-progress, unimplemented Image object for embedding. Requires inference infrastructure, unimplemented.

image: Any
model: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

options: Optional[Dict[str, Any]]
class IndexesOneOf(*, type: Literal['plain'], options: Any)[source]

Bases: BaseModel

Do not use any index, scan whole vector collection during search. Guarantee 100% precision, but may be time consuming on large collections.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

options: Any
type: Literal['plain']
class IndexesOneOf1(*, type: Literal['hnsw'], options: HnswConfig)[source]

Bases: BaseModel

Use filterable HNSW index for approximate search. Is very fast even on a very huge collections, but require additional space to store index and additional time to build it.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

options: HnswConfig
type: Literal['hnsw']
class InferenceObject(*, object: Any, model: str, options: Optional[Dict[str, Any]] = None)[source]

Bases: BaseModel

WARN: Work-in-progress, unimplemented Custom object for embedding. Requires inference infrastructure, unimplemented.

model: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

object: Any
options: Optional[Dict[str, Any]]
class InitFrom(*, collection: str)[source]

Bases: BaseModel

Operation for creating new collection and (optionally) specify index params

collection: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class InlineResponse200(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[bool] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[bool]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2001(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[TelemetryData] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[TelemetryData]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20010(*, time: Optional[float] = None, status: Optional[str] = None, result: Optional[bool] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[bool]
status: Optional[str]
time: Optional[float]
class InlineResponse20011(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[SnapshotDescription]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[List[SnapshotDescription]]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20012(*, time: Optional[float] = None, status: Optional[str] = None, result: Optional[SnapshotDescription] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[SnapshotDescription]
status: Optional[str]
time: Optional[float]
class InlineResponse20013(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[Record] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[Record]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20014(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[Record]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[List[Record]]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20015(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[UpdateResult]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[List[UpdateResult]]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20016(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[ScrollResult] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[ScrollResult]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20017(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[ScoredPoint]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[List[ScoredPoint]]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20018(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[List[ScoredPoint]]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[List[List[ScoredPoint]]]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20019(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[GroupsResult] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[GroupsResult]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2002(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[LocksOption] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[LocksOption]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20020(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CountResult] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[CountResult]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20021(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[FacetResponse] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[FacetResponse]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20022(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[QueryResponse] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[QueryResponse]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20023(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[QueryResponse]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[List[QueryResponse]]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20024(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[SearchMatrixPairsResponse] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[SearchMatrixPairsResponse]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse20025(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[SearchMatrixOffsetsResponse] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[SearchMatrixOffsetsResponse]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2003(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[Union[ClusterStatusOneOf, ClusterStatusOneOf1]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[ClusterStatus]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2004(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionsResponse] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[CollectionsResponse]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2005(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionInfo] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[CollectionInfo]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2006(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[UpdateResult] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[UpdateResult]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2007(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionExistence] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[CollectionExistence]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2008(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionClusterInfo] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[CollectionClusterInfo]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse2009(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionsAliasesResponse] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

result: Optional[CollectionsAliasesResponse]
status: Optional[str]
time: Optional[float]
usage: Optional[HardwareUsage]
class InlineResponse202(*, time: Optional[float] = None, status: Optional[str] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

status: Optional[str]
time: Optional[float]
class IntegerIndexParams(*, type: IntegerIndexType, lookup: Optional[bool] = None, range: Optional[bool] = None, is_principal: Optional[bool] = None, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

is_principal: Optional[bool]
lookup: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
range: Optional[bool]
type: IntegerIndexType
class IntegerIndexType(value)[source]

Bases: str, Enum

An enumeration.

INTEGER = 'integer'
class IsEmptyCondition(*, is_empty: PayloadField)[source]

Bases: BaseModel

Select points with empty payload for a specified field

is_empty: PayloadField
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class IsNullCondition(*, is_null: PayloadField)[source]

Bases: BaseModel

Select points with null payload for a specified field

is_null: PayloadField
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class KeywordIndexParams(*, type: KeywordIndexType, is_tenant: Optional[bool] = None, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

is_tenant: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
type: KeywordIndexType
class KeywordIndexType(value)[source]

Bases: str, Enum

An enumeration.

KEYWORD = 'keyword'
class LocalShardInfo(*, shard_id: int, shard_key: Optional[Union[int, str]] = None, points_count: int, state: ReplicaState)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points_count: int
shard_id: int
shard_key: Optional[ShardKey]
state: ReplicaState
class LocalShardTelemetry(*, variant_name: Optional[str] = None, status: Optional[ShardStatus] = None, total_optimized_points: int, segments: List[SegmentTelemetry], optimizations: OptimizerTelemetry, async_scorer: Optional[bool] = None)[source]

Bases: BaseModel

async_scorer: Optional[bool]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

optimizations: OptimizerTelemetry
segments: List[SegmentTelemetry]
status: Optional[ShardStatus]
total_optimized_points: int
variant_name: Optional[str]
class LocksOption(*, error_message: Optional[str] = None, write: bool)[source]

Bases: BaseModel

error_message: Optional[str]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

write: bool
class LookupLocation(*, collection: str, vector: Optional[str] = None, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]

Bases: BaseModel

Defines a location to use for looking up the vector. Specifies collection and vector field name.

collection: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_key: Optional[ShardKeySelector]
vector: Optional[str]
class MatchAny(*, any: Union[List[str], List[int]])[source]

Bases: BaseModel

Exact match on any of the given values

any: AnyVariants
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class MatchExcept(*, except_: Union[List[str], List[int]])[source]

Bases: BaseModel

Should have at least one value not matching the any given values

except_: AnyVariants
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class MatchText(*, text: str)[source]

Bases: BaseModel

Full-text match of the strings.

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

text: str
class MatchValue(*, value: Union[bool, int, str])[source]

Bases: BaseModel

Exact match of the given value

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

value: ValueVariants
class MaxOptimizationThreadsSetting(value)[source]

Bases: str, Enum

An enumeration.

AUTO = 'auto'
class MemoryTelemetry(*, active_bytes: int, allocated_bytes: int, metadata_bytes: int, resident_bytes: int, retained_bytes: int)[source]

Bases: BaseModel

active_bytes: int
allocated_bytes: int
metadata_bytes: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

resident_bytes: int
retained_bytes: int
class MessageSendErrors(*, count: int, latest_error: Optional[str] = None, latest_error_timestamp: Optional[Union[datetime, date]] = None)[source]

Bases: BaseModel

Message send failures for a particular peer

count: int
latest_error: Optional[str]
latest_error_timestamp: Optional[Union[datetime, date]]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class MinShould(*, conditions: List[Union[FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]], min_count: int)[source]

Bases: BaseModel

conditions: List[Condition]
min_count: int
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class Modifier(value)[source]

Bases: str, Enum

If used, include weight modification, which will be applied to sparse vectors at query time: None - no modification (default) Idf - inverse document frequency, based on statistics of the collection

IDF = 'idf'
NONE = 'none'
class MoveShard(*, shard_id: int, to_peer_id: int, from_peer_id: int, method: Optional[Union[ShardTransferMethodOneOf, ShardTransferMethodOneOf1, ShardTransferMethodOneOf2, ShardTransferMethodOneOf3]] = None)[source]

Bases: BaseModel

from_peer_id: int
method: Optional[ShardTransferMethod]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_id: int
to_peer_id: int
class MoveShardOperation(*, move_shard: MoveShard)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

move_shard: MoveShard
class MultiVectorComparator(value)[source]

Bases: str, Enum

An enumeration.

MAX_SIM = 'max_sim'
class MultiVectorConfig(*, comparator: MultiVectorComparator)[source]

Bases: BaseModel

comparator: MultiVectorComparator
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class NamedSparseVector(*, name: str, vector: SparseVector)[source]

Bases: BaseModel

Sparse vector data with name

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
vector: SparseVector
class NamedVector(*, name: str, vector: List[float])[source]

Bases: BaseModel

Dense vector data with name

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
vector: List[float]
class NearestQuery(*, nearest: Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

nearest: VectorInput
class Nested(*, key: str, filter: Filter)[source]

Bases: BaseModel

Select points with payload for a specified nested field

filter: Filter
key: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class NestedCondition(*, nested: Nested)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

nested: Nested
class OperationDurationStatistics(*, count: int, fail_count: Optional[int] = None, avg_duration_micros: Optional[float] = None, min_duration_micros: Optional[float] = None, max_duration_micros: Optional[float] = None, total_duration_micros: int, last_responded: Optional[Union[datetime, date]] = None)[source]

Bases: BaseModel

avg_duration_micros: Optional[float]
count: int
fail_count: Optional[int]
last_responded: Optional[Union[datetime, date]]
max_duration_micros: Optional[float]
min_duration_micros: Optional[float]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

total_duration_micros: int
class OptimizerTelemetry(*, status: Union[OptimizersStatusOneOf, OptimizersStatusOneOf1], optimizations: OperationDurationStatistics, log: List[TrackerTelemetry])[source]

Bases: BaseModel

log: List[TrackerTelemetry]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

optimizations: OperationDurationStatistics
status: OptimizersStatus
class OptimizersConfig(*, deleted_threshold: float, vacuum_min_vector_number: int, default_segment_number: int, max_segment_size: Optional[int] = None, memmap_threshold: Optional[int] = None, indexing_threshold: Optional[int] = None, flush_interval_sec: int, max_optimization_threads: Optional[int] = None)[source]

Bases: BaseModel

default_segment_number: int
deleted_threshold: float
flush_interval_sec: int
indexing_threshold: Optional[int]
max_optimization_threads: Optional[int]
max_segment_size: Optional[int]
memmap_threshold: Optional[int]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

vacuum_min_vector_number: int
class OptimizersConfigDiff(*, deleted_threshold: Optional[float] = None, vacuum_min_vector_number: Optional[int] = None, default_segment_number: Optional[int] = None, max_segment_size: Optional[int] = None, memmap_threshold: Optional[int] = None, indexing_threshold: Optional[int] = None, flush_interval_sec: Optional[int] = None, max_optimization_threads: Optional[Union[int, MaxOptimizationThreadsSetting]] = None)[source]

Bases: BaseModel

default_segment_number: Optional[int]
deleted_threshold: Optional[float]
flush_interval_sec: Optional[int]
indexing_threshold: Optional[int]
max_optimization_threads: Optional[MaxOptimizationThreads]
max_segment_size: Optional[int]
memmap_threshold: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

vacuum_min_vector_number: Optional[int]
class OptimizersStatusOneOf(value)[source]

Bases: str, Enum

Optimizers are reporting as expected

OK = 'ok'
class OptimizersStatusOneOf1(*, error: str)[source]

Bases: BaseModel

Something wrong happened with optimizers

error: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class OrderBy(*, key: str, direction: Optional[Direction] = None, start_from: Optional[Union[int, float, datetime, date]] = None)[source]

Bases: BaseModel

direction: Optional[Direction]
key: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

start_from: Optional[StartFrom]
class OrderByQuery(*, order_by: Union[str, OrderBy])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

order_by: OrderByInterface
class OverwritePayloadOperation(*, overwrite_payload: SetPayload)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

overwrite_payload: SetPayload
class P2pConfigTelemetry(*, connection_pool_size: int)[source]

Bases: BaseModel

connection_pool_size: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class PayloadField(*, key: str)[source]

Bases: BaseModel

Payload field

key: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class PayloadIndexInfo(*, data_type: PayloadSchemaType, params: Optional[Union[KeywordIndexParams, IntegerIndexParams, FloatIndexParams, GeoIndexParams, TextIndexParams, BoolIndexParams, DatetimeIndexParams, UuidIndexParams]] = None, points: int)[source]

Bases: BaseModel

Display payload field type & index information

data_type: PayloadSchemaType
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

params: Optional[PayloadSchemaParams]
points: int
class PayloadIndexTelemetry(*, field_name: Optional[str] = None, points_values_count: int, points_count: int, histogram_bucket_size: Optional[int] = None)[source]

Bases: BaseModel

field_name: Optional[str]
histogram_bucket_size: Optional[int]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points_count: int
points_values_count: int
class PayloadSchemaType(value)[source]

Bases: str, Enum

All possible names of payload types

BOOL = 'bool'
DATETIME = 'datetime'
FLOAT = 'float'
GEO = 'geo'
INTEGER = 'integer'
KEYWORD = 'keyword'
TEXT = 'text'
UUID = 'uuid'
class PayloadSelectorExclude(*, exclude: List[str])[source]

Bases: BaseModel

exclude: List[str]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class PayloadSelectorInclude(*, include: List[str])[source]

Bases: BaseModel

include: List[str]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class PayloadStorageTypeOneOf(*, type: Literal['in_memory'])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

type: Literal['in_memory']
class PayloadStorageTypeOneOf1(*, type: Literal['on_disk'])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

type: Literal['on_disk']
class PayloadStorageTypeOneOf2(*, type: Literal['mmap'])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

type: Literal['mmap']
class PeerInfo(*, uri: str)[source]

Bases: BaseModel

Information of a peer in the cluster

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

uri: str
class PointGroup(*, hits: List[ScoredPoint], id: Union[int, str], lookup: Optional[Record] = None)[source]

Bases: BaseModel

hits: List[ScoredPoint]
id: GroupId
lookup: Optional[Record]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class PointIdsList(*, points: List[Union[int, str]], shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points: List[ExtendedPointId]
shard_key: Optional[ShardKeySelector]
class PointRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, ids: List[Union[int, str]], with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None)[source]

Bases: BaseModel

ids: List[ExtendedPointId]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_key: Optional[ShardKeySelector]
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class PointStruct(*, id: Union[int, str], vector: Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]], Document, Image, InferenceObject]], Document, Image, InferenceObject], payload: Optional[Dict[str, Any]] = None)[source]

Bases: BaseModel

id: ExtendedPointId
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

payload: Optional[Payload]
vector: VectorStruct
class PointVectors(*, id: Union[int, str], vector: Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]], Document, Image, InferenceObject]], Document, Image, InferenceObject])[source]

Bases: BaseModel

id: ExtendedPointId
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

vector: VectorStruct
class PointsBatch(*, batch: Batch, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]

Bases: BaseModel

batch: Batch
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_key: Optional[ShardKeySelector]
class PointsList(*, points: List[PointStruct], shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points: List[PointStruct]
shard_key: Optional[ShardKeySelector]
class Prefetch(*, prefetch: Optional[Union[List[Prefetch], Prefetch]] = None, query: Optional[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject, NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, SampleQuery]] = None, using: Optional[str] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, score_threshold: Optional[float] = None, limit: Optional[int] = None, lookup_from: Optional[LookupLocation] = None)[source]

Bases: BaseModel

filter: Optional[Filter]
limit: Optional[int]
lookup_from: Optional[LookupLocation]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

params: Optional[SearchParams]
prefetch: Optional[Union[List[Prefetch], Prefetch]]
query: Optional[QueryInterface]
score_threshold: Optional[float]
using: Optional[str]
class ProductQuantization(*, product: ProductQuantizationConfig)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

product: ProductQuantizationConfig
class ProductQuantizationConfig(*, compression: CompressionRatio, always_ram: Optional[bool] = None)[source]

Bases: BaseModel

always_ram: Optional[bool]
compression: CompressionRatio
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class QuantizationSearchParams(*, ignore: Optional[bool] = False, rescore: Optional[bool] = None, oversampling: Optional[float] = None)[source]

Bases: BaseModel

Additional parameters of the search

ignore: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

oversampling: Optional[float]
rescore: Optional[bool]
class QueryGroupsRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, prefetch: Optional[Union[List[Prefetch], Prefetch]] = None, query: Optional[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject, NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, SampleQuery]] = None, using: Optional[str] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, score_threshold: Optional[float] = None, with_vector: Optional[Union[bool, List[str]]] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, lookup_from: Optional[LookupLocation] = None, group_by: str, group_size: Optional[int] = None, limit: Optional[int] = None, with_lookup: Optional[Union[str, WithLookup]] = None)[source]

Bases: BaseModel

filter: Optional[Filter]
group_by: str
group_size: Optional[int]
limit: Optional[int]
lookup_from: Optional[LookupLocation]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

params: Optional[SearchParams]
prefetch: Optional[Union[List[Prefetch], Prefetch]]
query: Optional[QueryInterface]
score_threshold: Optional[float]
shard_key: Optional[ShardKeySelector]
using: Optional[str]
with_lookup: Optional[WithLookupInterface]
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class QueryRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, prefetch: Optional[Union[List[Prefetch], Prefetch]] = None, query: Optional[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject, NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, SampleQuery]] = None, using: Optional[str] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, score_threshold: Optional[float] = None, limit: Optional[int] = None, offset: Optional[int] = None, with_vector: Optional[Union[bool, List[str]]] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, lookup_from: Optional[LookupLocation] = None)[source]

Bases: BaseModel

filter: Optional[Filter]
limit: Optional[int]
lookup_from: Optional[LookupLocation]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

offset: Optional[int]
params: Optional[SearchParams]
prefetch: Optional[Union[List[Prefetch], Prefetch]]
query: Optional[QueryInterface]
score_threshold: Optional[float]
shard_key: Optional[ShardKeySelector]
using: Optional[str]
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class QueryRequestBatch(*, searches: List[QueryRequest])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

searches: List[QueryRequest]
class QueryResponse(*, points: List[ScoredPoint])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points: List[ScoredPoint]
class RaftInfo(*, term: int, commit: int, pending_operations: int, leader: Optional[int] = None, role: Optional[StateRole] = None, is_voter: bool)[source]

Bases: BaseModel

Summary information about the current raft state

commit: int
is_voter: bool
leader: Optional[int]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

pending_operations: int
role: Optional[StateRole]
term: int
class Range(*, lt: Optional[float] = None, gt: Optional[float] = None, gte: Optional[float] = None, lte: Optional[float] = None)[source]

Bases: BaseModel

Range filter request

gt: Optional[float]
gte: Optional[float]
lt: Optional[float]
lte: Optional[float]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ReadConsistencyType(value)[source]

Bases: str, Enum

  • majority - send N/2+1 random request and return points, which present on all of them * quorum - send requests to all nodes and return points which present on majority of nodes * all - send requests to all nodes and return points which present on all nodes

ALL = 'all'
MAJORITY = 'majority'
QUORUM = 'quorum'
class RecommendGroupsRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, positive: Optional[List[Union[int, str, List[float], SparseVector]]] = [], negative: Optional[List[Union[int, str, List[float], SparseVector]]] = [], strategy: Optional[RecommendStrategy] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[LookupLocation] = None, group_by: str, group_size: int, limit: int, with_lookup: Optional[Union[str, WithLookup]] = None)[source]

Bases: BaseModel

filter: Optional[Filter]
group_by: str
group_size: int
limit: int
lookup_from: Optional[LookupLocation]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

negative: Optional[List[RecommendExample]]
params: Optional[SearchParams]
positive: Optional[List[RecommendExample]]
score_threshold: Optional[float]
shard_key: Optional[ShardKeySelector]
strategy: Optional[RecommendStrategy]
using: Optional[UsingVector]
with_lookup: Optional[WithLookupInterface]
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class RecommendInput(*, positive: Optional[List[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject]]] = None, negative: Optional[List[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject]]] = None, strategy: Optional[RecommendStrategy] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

negative: Optional[List[VectorInput]]
positive: Optional[List[VectorInput]]
strategy: Optional[RecommendStrategy]
class RecommendQuery(*, recommend: RecommendInput)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

recommend: RecommendInput
class RecommendRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, positive: Optional[List[Union[int, str, List[float], SparseVector]]] = [], negative: Optional[List[Union[int, str, List[float], SparseVector]]] = [], strategy: Optional[RecommendStrategy] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, limit: int, offset: Optional[int] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[LookupLocation] = None)[source]

Bases: BaseModel

Recommendation request. Provides positive and negative examples of the vectors, which can be ids of points that are already stored in the collection, raw vectors, or even ids and vectors combined. Service should look for the points which are closer to positive examples and at the same time further to negative examples. The concrete way of how to compare negative and positive distances is up to the strategy chosen.

filter: Optional[Filter]
limit: int
lookup_from: Optional[LookupLocation]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

negative: Optional[List[RecommendExample]]
offset: Optional[int]
params: Optional[SearchParams]
positive: Optional[List[RecommendExample]]
score_threshold: Optional[float]
shard_key: Optional[ShardKeySelector]
strategy: Optional[RecommendStrategy]
using: Optional[UsingVector]
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class RecommendRequestBatch(*, searches: List[RecommendRequest])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

searches: List[RecommendRequest]
class RecommendStrategy(value)[source]

Bases: str, Enum

How to use positive and negative examples to find the results, default is average_vector: * average_vector - Average positive and negative vectors and create a single query with the formula query = avg_pos + avg_pos - avg_neg. Then performs normal search. * best_score - Uses custom search objective. Each candidate is compared against all examples, its score is then chosen from the max(max_pos_score, max_neg_score). If the max_neg_score is chosen then it is squared and negated, otherwise it is just the max_pos_score.

AVERAGE_VECTOR = 'average_vector'
BEST_SCORE = 'best_score'
class Record(*, id: Union[int, str], payload: Optional[Dict[str, Any]] = None, vector: Optional[Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]]]]]] = None, shard_key: Optional[Union[int, str]] = None, order_value: Optional[Union[int, float]] = None)[source]

Bases: BaseModel

Point data

id: ExtendedPointId
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

order_value: Optional[OrderValue]
payload: Optional[Payload]
shard_key: Optional[ShardKey]
vector: Optional[VectorStructOutput]
class RemoteShardInfo(*, shard_id: int, shard_key: Optional[Union[int, str]] = None, peer_id: int, state: ReplicaState)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

peer_id: int
shard_id: int
shard_key: Optional[ShardKey]
state: ReplicaState
class RemoteShardTelemetry(*, shard_id: int, peer_id: Optional[int] = None, searches: OperationDurationStatistics, updates: OperationDurationStatistics)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

peer_id: Optional[int]
searches: OperationDurationStatistics
shard_id: int
updates: OperationDurationStatistics
class RenameAlias(*, old_alias_name: str, new_alias_name: str)[source]

Bases: BaseModel

Change alias to a new one

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

new_alias_name: str
old_alias_name: str
class RenameAliasOperation(*, rename_alias: RenameAlias)[source]

Bases: BaseModel

Change alias to a new one

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

rename_alias: RenameAlias
class Replica(*, shard_id: int, peer_id: int)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

peer_id: int
shard_id: int
class ReplicaSetTelemetry(*, id: int, key: Optional[Union[int, str]] = None, local: Optional[LocalShardTelemetry] = None, remote: List[RemoteShardTelemetry], replicate_states: Dict[str, ReplicaState])[source]

Bases: BaseModel

id: int
key: Optional[ShardKey]
local: Optional[LocalShardTelemetry]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

remote: List[RemoteShardTelemetry]
replicate_states: Dict[str, ReplicaState]
class ReplicaState(value)[source]

Bases: str, Enum

State of the single shard within a replica set.

ACTIVE = 'Active'
DEAD = 'Dead'
INITIALIZING = 'Initializing'
LISTENER = 'Listener'
PARTIAL = 'Partial'
PARTIALSNAPSHOT = 'PartialSnapshot'
RECOVERY = 'Recovery'
RESHARDING = 'Resharding'
RESHARDINGSCALEDOWN = 'ReshardingScaleDown'
class ReplicateShard(*, shard_id: int, to_peer_id: int, from_peer_id: int, method: Optional[Union[ShardTransferMethodOneOf, ShardTransferMethodOneOf1, ShardTransferMethodOneOf2, ShardTransferMethodOneOf3]] = None)[source]

Bases: BaseModel

from_peer_id: int
method: Optional[ShardTransferMethod]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_id: int
to_peer_id: int
class ReplicateShardOperation(*, replicate_shard: ReplicateShard)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

replicate_shard: ReplicateShard
class RequestsTelemetry(*, rest: WebApiTelemetry, grpc: GrpcTelemetry)[source]

Bases: BaseModel

grpc: GrpcTelemetry
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

rest: WebApiTelemetry
class ReshardingDirectionOneOf(value)[source]

Bases: str, Enum

Scale up, add a new shard

UP = 'up'
class ReshardingDirectionOneOf1(value)[source]

Bases: str, Enum

Scale down, remove a shard

DOWN = 'down'
class ReshardingInfo(*, direction: Union[ReshardingDirectionOneOf, ReshardingDirectionOneOf1], shard_id: int, peer_id: int, shard_key: Optional[Union[int, str]] = None)[source]

Bases: BaseModel

direction: ReshardingDirection
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

peer_id: int
shard_id: int
shard_key: Optional[ShardKey]
class RestartTransfer(*, shard_id: int, from_peer_id: int, to_peer_id: int, method: Union[ShardTransferMethodOneOf, ShardTransferMethodOneOf1, ShardTransferMethodOneOf2, ShardTransferMethodOneOf3])[source]

Bases: BaseModel

from_peer_id: int
method: ShardTransferMethod
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_id: int
to_peer_id: int
class RestartTransferOperation(*, restart_transfer: RestartTransfer)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

restart_transfer: RestartTransfer
class RunningEnvironmentTelemetry(*, distribution: Optional[str] = None, distribution_version: Optional[str] = None, is_docker: bool, cores: Optional[int] = None, ram_size: Optional[int] = None, disk_size: Optional[int] = None, cpu_flags: str, cpu_endian: Optional[CpuEndian] = None, gpu_devices: Optional[List[GpuDeviceTelemetry]] = None)[source]

Bases: BaseModel

cores: Optional[int]
cpu_endian: Optional[CpuEndian]
cpu_flags: str
disk_size: Optional[int]
distribution: Optional[str]
distribution_version: Optional[str]
gpu_devices: Optional[List[GpuDeviceTelemetry]]
is_docker: bool
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

ram_size: Optional[int]
class Sample(value)[source]

Bases: str, Enum

An enumeration.

RANDOM = 'random'
class SampleQuery(*, sample: Sample)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

sample: Sample
class ScalarQuantization(*, scalar: ScalarQuantizationConfig)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

scalar: ScalarQuantizationConfig
class ScalarQuantizationConfig(*, type: ScalarType, quantile: Optional[float] = None, always_ram: Optional[bool] = None)[source]

Bases: BaseModel

always_ram: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

quantile: Optional[float]
type: ScalarType
class ScalarType(value)[source]

Bases: str, Enum

An enumeration.

INT8 = 'int8'
class ScoredPoint(*, id: Union[int, str], version: int, score: float, payload: Optional[Dict[str, Any]] = None, vector: Optional[Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]]]]]] = None, shard_key: Optional[Union[int, str]] = None, order_value: Optional[Union[int, float]] = None)[source]

Bases: BaseModel

Search result

id: ExtendedPointId
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

order_value: Optional[OrderValue]
payload: Optional[Payload]
score: float
shard_key: Optional[ShardKey]
vector: Optional[VectorStructOutput]
version: int
class ScrollRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, offset: Optional[Union[int, str]] = None, limit: Optional[int] = None, filter: Optional[Filter] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, order_by: Optional[Union[str, OrderBy]] = None)[source]

Bases: BaseModel

Scroll request - paginate over all points which matches given condition

filter: Optional[Filter]
limit: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

offset: Optional[ExtendedPointId]
order_by: Optional[OrderByInterface]
shard_key: Optional[ShardKeySelector]
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class ScrollResult(*, points: List[Record], next_page_offset: Optional[Union[int, str]] = None)[source]

Bases: BaseModel

Result of the points read request

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

next_page_offset: Optional[ExtendedPointId]
points: List[Record]
class SearchGroupsRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, vector: Union[List[float], NamedVector, NamedSparseVector], filter: Optional[Filter] = None, params: Optional[SearchParams] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, score_threshold: Optional[float] = None, group_by: str, group_size: int, limit: int, with_lookup: Optional[Union[str, WithLookup]] = None)[source]

Bases: BaseModel

filter: Optional[Filter]
group_by: str
group_size: int
limit: int
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

params: Optional[SearchParams]
score_threshold: Optional[float]
shard_key: Optional[ShardKeySelector]
vector: NamedVectorStruct
with_lookup: Optional[WithLookupInterface]
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class SearchMatrixOffsetsResponse(*, offsets_row: List[int], offsets_col: List[int], scores: List[float], ids: List[Union[int, str]])[source]

Bases: BaseModel

ids: List[ExtendedPointId]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

offsets_col: List[int]
offsets_row: List[int]
scores: List[float]
class SearchMatrixPair(*, a: Union[int, str], b: Union[int, str], score: float)[source]

Bases: BaseModel

Pair of points (a, b) with score

a: ExtendedPointId
b: ExtendedPointId
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

score: float
class SearchMatrixPairsResponse(*, pairs: List[SearchMatrixPair])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

pairs: List[SearchMatrixPair]
class SearchMatrixRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, filter: Optional[Filter] = None, sample: Optional[int] = None, limit: Optional[int] = None, using: Optional[str] = None)[source]

Bases: BaseModel

filter: Optional[Filter]
limit: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

sample: Optional[int]
shard_key: Optional[ShardKeySelector]
using: Optional[str]
class SearchParams(*, hnsw_ef: Optional[int] = None, exact: Optional[bool] = False, quantization: Optional[QuantizationSearchParams] = None, indexed_only: Optional[bool] = False)[source]

Bases: BaseModel

Additional parameters of the search

exact: Optional[bool]
hnsw_ef: Optional[int]
indexed_only: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

quantization: Optional[QuantizationSearchParams]
class SearchRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, vector: Union[List[float], NamedVector, NamedSparseVector], filter: Optional[Filter] = None, params: Optional[SearchParams] = None, limit: int, offset: Optional[int] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, score_threshold: Optional[float] = None)[source]

Bases: BaseModel

Search request. Holds all conditions and parameters for the search of most similar points by vector similarity given the filtering restrictions.

filter: Optional[Filter]
limit: int
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

offset: Optional[int]
params: Optional[SearchParams]
score_threshold: Optional[float]
shard_key: Optional[ShardKeySelector]
vector: NamedVectorStruct
with_payload: Optional[WithPayloadInterface]
with_vector: Optional[WithVector]
class SearchRequestBatch(*, searches: List[SearchRequest])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

searches: List[SearchRequest]
class SegmentConfig(*, vector_data: Optional[Dict[str, VectorDataConfig]] = {}, sparse_vector_data: Optional[Dict[str, SparseVectorDataConfig]] = None, payload_storage_type: Union[PayloadStorageTypeOneOf, PayloadStorageTypeOneOf1, PayloadStorageTypeOneOf2])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

payload_storage_type: PayloadStorageType
sparse_vector_data: Optional[Dict[str, SparseVectorDataConfig]]
vector_data: Optional[Dict[str, VectorDataConfig]]
class SegmentInfo(*, segment_type: SegmentType, num_vectors: int, num_points: int, num_indexed_vectors: int, num_deleted_vectors: int, vectors_size_bytes: int, payloads_size_bytes: int, ram_usage_bytes: int, disk_usage_bytes: int, is_appendable: bool, index_schema: Dict[str, PayloadIndexInfo], vector_data: Dict[str, VectorDataInfo])[source]

Bases: BaseModel

Aggregated information about segment

disk_usage_bytes: int
index_schema: Dict[str, PayloadIndexInfo]
is_appendable: bool
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

num_deleted_vectors: int
num_indexed_vectors: int
num_points: int
num_vectors: int
payloads_size_bytes: int
ram_usage_bytes: int
segment_type: SegmentType
vector_data: Dict[str, VectorDataInfo]
vectors_size_bytes: int
class SegmentTelemetry(*, info: SegmentInfo, config: SegmentConfig, vector_index_searches: List[VectorIndexSearchesTelemetry], payload_field_indices: List[PayloadIndexTelemetry])[source]

Bases: BaseModel

config: SegmentConfig
info: SegmentInfo
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

payload_field_indices: List[PayloadIndexTelemetry]
vector_index_searches: List[VectorIndexSearchesTelemetry]
class SegmentType(value)[source]

Bases: str, Enum

Type of segment

INDEXED = 'indexed'
PLAIN = 'plain'
SPECIAL = 'special'
class SetPayload(*, payload: Dict[str, Any], points: Optional[List[Union[int, str]]] = None, filter: Optional[Filter] = None, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, key: Optional[str] = None)[source]

Bases: BaseModel

This data structure is used in API interface and applied across multiple shards

filter: Optional[Filter]
key: Optional[str]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

payload: Payload
points: Optional[List[ExtendedPointId]]
shard_key: Optional[ShardKeySelector]
class SetPayloadOperation(*, set_payload: SetPayload)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

set_payload: SetPayload
class ShardCleanStatusFailedTelemetry(*, reason: str)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

reason: str
class ShardCleanStatusProgressTelemetry(*, deleted_points: int)[source]

Bases: BaseModel

deleted_points: int
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ShardCleanStatusTelemetryOneOf(value)[source]

Bases: str, Enum

An enumeration.

CANCELLED = 'cancelled'
DONE = 'done'
STARTED = 'started'
class ShardCleanStatusTelemetryOneOf1(*, progress: ShardCleanStatusProgressTelemetry)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

progress: ShardCleanStatusProgressTelemetry
class ShardCleanStatusTelemetryOneOf2(*, failed: ShardCleanStatusFailedTelemetry)[source]

Bases: BaseModel

failed: ShardCleanStatusFailedTelemetry
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class ShardSnapshotRecover(*, location: str, priority: Optional[SnapshotPriority] = None, checksum: Optional[str] = None, api_key: Optional[str] = None)[source]

Bases: BaseModel

api_key: Optional[str]
checksum: Optional[str]
location: ShardSnapshotLocation
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

priority: Optional[SnapshotPriority]
class ShardStatus(value)[source]

Bases: str, Enum

Current state of the shard (supports same states as the collection) Green - all good. Yellow - optimization is running, 'Grey' - optimizations are possible but not triggered, Red - some operations failed and was not recovered

GREEN = 'green'
GREY = 'grey'
RED = 'red'
YELLOW = 'yellow'
class ShardTransferInfo(*, shard_id: int, to_shard_id: Optional[int] = None, from_: int, to: int, sync: bool, method: Optional[Union[ShardTransferMethodOneOf, ShardTransferMethodOneOf1, ShardTransferMethodOneOf2, ShardTransferMethodOneOf3]] = None, comment: Optional[str] = None)[source]

Bases: BaseModel

comment: Optional[str]
from_: int
method: Optional[ShardTransferMethod]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

shard_id: int
sync: bool
to: int
to_shard_id: Optional[int]
class ShardTransferMethodOneOf(value)[source]

Bases: str, Enum

Stream all shard records in batches until the whole shard is transferred.

STREAM_RECORDS = 'stream_records'
class ShardTransferMethodOneOf1(value)[source]

Bases: str, Enum

Snapshot the shard, transfer and restore it on the receiver.

SNAPSHOT = 'snapshot'
class ShardTransferMethodOneOf2(value)[source]

Bases: str, Enum

Attempt to transfer shard difference by WAL delta.

WAL_DELTA = 'wal_delta'
class ShardTransferMethodOneOf3(value)[source]

Bases: str, Enum

Shard transfer for resharding: stream all records in batches until all points are transferred.

RESHARDING_STREAM_RECORDS = 'resharding_stream_records'
class ShardingMethod(value)[source]

Bases: str, Enum

An enumeration.

AUTO = 'auto'
CUSTOM = 'custom'
class SnapshotDescription(*, name: str, creation_time: Optional[str] = None, size: int, checksum: Optional[str] = None)[source]

Bases: BaseModel

checksum: Optional[str]
creation_time: Optional[str]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
size: int
class SnapshotPriority(value)[source]

Bases: str, Enum

Defines source of truth for snapshot recovery: NoSync means - restore snapshot without any additional synchronization. Snapshot means - prefer snapshot data over the current state. Replica means - prefer existing data over the snapshot.

NO_SYNC = 'no_sync'
REPLICA = 'replica'
SNAPSHOT = 'snapshot'
class SnapshotRecover(*, location: str, priority: Optional[SnapshotPriority] = None, checksum: Optional[str] = None, api_key: Optional[str] = None)[source]

Bases: BaseModel

api_key: Optional[str]
checksum: Optional[str]
location: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

priority: Optional[SnapshotPriority]
class SparseIndexConfig(*, full_scan_threshold: Optional[int] = None, index_type: Union[SparseIndexTypeOneOf, SparseIndexTypeOneOf1, SparseIndexTypeOneOf2], datatype: Optional[VectorStorageDatatype] = None)[source]

Bases: BaseModel

Configuration for sparse inverted index.

datatype: Optional[VectorStorageDatatype]
full_scan_threshold: Optional[int]
index_type: SparseIndexType
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class SparseIndexParams(*, full_scan_threshold: Optional[int] = None, on_disk: Optional[bool] = None, datatype: Optional[Datatype] = None)[source]

Bases: BaseModel

Configuration for sparse inverted index.

datatype: Optional[Datatype]
full_scan_threshold: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
class SparseIndexTypeOneOf(value)[source]

Bases: str, Enum

Mutable RAM sparse index

MUTABLERAM = 'MutableRam'
class SparseIndexTypeOneOf1(value)[source]

Bases: str, Enum

Immutable RAM sparse index

IMMUTABLERAM = 'ImmutableRam'
class SparseIndexTypeOneOf2(value)[source]

Bases: str, Enum

Mmap sparse index

MMAP = 'Mmap'
class SparseVector(*, indices: List[int], values: List[float])[source]

Bases: BaseModel

Sparse vector structure

indices: List[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

values: List[float]
class SparseVectorDataConfig(*, index: SparseIndexConfig, storage_type: Optional[Union[SparseVectorStorageTypeOneOf, SparseVectorStorageTypeOneOf1]] = None)[source]

Bases: BaseModel

Config of single sparse vector data storage

index: SparseIndexConfig
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

storage_type: Optional[SparseVectorStorageType]
class SparseVectorParams(*, index: Optional[SparseIndexParams] = None, modifier: Optional[Modifier] = None)[source]

Bases: BaseModel

Params of single sparse vector data storage

index: Optional[SparseIndexParams]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

modifier: Optional[Modifier]
class SparseVectorStorageTypeOneOf(value)[source]

Bases: str, Enum

Storage on disk

ON_DISK = 'on_disk'
class SparseVectorStorageTypeOneOf1(value)[source]

Bases: str, Enum

Storage in memory maps

MMAP = 'mmap'
class StartResharding(*, direction: Union[ReshardingDirectionOneOf, ReshardingDirectionOneOf1], peer_id: Optional[int] = None, shard_key: Optional[Union[int, str]] = None)[source]

Bases: BaseModel

direction: ReshardingDirection
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

peer_id: Optional[int]
shard_key: Optional[ShardKey]
class StartReshardingOperation(*, start_resharding: StartResharding)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

start_resharding: StartResharding
class StateRole(value)[source]

Bases: str, Enum

Role of the peer in the consensus

CANDIDATE = 'Candidate'
FOLLOWER = 'Follower'
LEADER = 'Leader'
PRECANDIDATE = 'PreCandidate'
class StrictModeConfig(*, enabled: Optional[bool] = None, max_query_limit: Optional[int] = None, max_timeout: Optional[int] = None, unindexed_filtering_retrieve: Optional[bool] = None, unindexed_filtering_update: Optional[bool] = None, search_max_hnsw_ef: Optional[int] = None, search_allow_exact: Optional[bool] = None, search_max_oversampling: Optional[float] = None, upsert_max_batchsize: Optional[int] = None, max_collection_vector_size_bytes: Optional[int] = None, read_rate_limit: Optional[int] = None, write_rate_limit: Optional[int] = None, max_collection_payload_size_bytes: Optional[int] = None, filter_max_conditions: Optional[int] = None, condition_max_size: Optional[int] = None)[source]

Bases: BaseModel

condition_max_size: Optional[int]
enabled: Optional[bool]
filter_max_conditions: Optional[int]
max_collection_payload_size_bytes: Optional[int]
max_collection_vector_size_bytes: Optional[int]
max_query_limit: Optional[int]
max_timeout: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

read_rate_limit: Optional[int]
search_allow_exact: Optional[bool]
search_max_hnsw_ef: Optional[int]
search_max_oversampling: Optional[float]
unindexed_filtering_retrieve: Optional[bool]
unindexed_filtering_update: Optional[bool]
upsert_max_batchsize: Optional[int]
write_rate_limit: Optional[int]
class TelemetryData(*, id: str, app: AppBuildTelemetry, collections: CollectionsTelemetry, cluster: Optional[ClusterTelemetry] = None, requests: Optional[RequestsTelemetry] = None, memory: Optional[MemoryTelemetry] = None, hardware: Optional[HardwareTelemetry] = None)[source]

Bases: BaseModel

app: AppBuildTelemetry
cluster: Optional[ClusterTelemetry]
collections: CollectionsTelemetry
hardware: Optional[HardwareTelemetry]
id: str
memory: Optional[MemoryTelemetry]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

requests: Optional[RequestsTelemetry]
class TextIndexParams(*, type: TextIndexType, tokenizer: Optional[TokenizerType] = None, min_token_len: Optional[int] = None, max_token_len: Optional[int] = None, lowercase: Optional[bool] = None, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

lowercase: Optional[bool]
max_token_len: Optional[int]
min_token_len: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
tokenizer: Optional[TokenizerType]
type: TextIndexType
class TextIndexType(value)[source]

Bases: str, Enum

An enumeration.

TEXT = 'text'
class TokenizerType(value)[source]

Bases: str, Enum

An enumeration.

MULTILINGUAL = 'multilingual'
PREFIX = 'prefix'
WHITESPACE = 'whitespace'
WORD = 'word'
class TrackerStatusOneOf(value)[source]

Bases: str, Enum

An enumeration.

DONE = 'done'
OPTIMIZING = 'optimizing'
class TrackerStatusOneOf1(*, cancelled: str)[source]

Bases: BaseModel

cancelled: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class TrackerStatusOneOf2(*, error: str)[source]

Bases: BaseModel

error: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class TrackerTelemetry(*, name: str, segment_ids: List[int], status: Union[TrackerStatusOneOf, TrackerStatusOneOf1, TrackerStatusOneOf2], start_at: Union[datetime, date], end_at: Optional[Union[datetime, date]] = None)[source]

Bases: BaseModel

Tracker object used in telemetry

end_at: Optional[Union[datetime, date]]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
segment_ids: List[int]
start_at: Union[datetime, date]
status: TrackerStatus
class UpdateCollection(*, vectors: Optional[Dict[str, VectorParamsDiff]] = None, optimizers_config: Optional[OptimizersConfigDiff] = None, params: Optional[CollectionParamsDiff] = None, hnsw_config: Optional[HnswConfigDiff] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization, Disabled]] = None, sparse_vectors: Optional[Dict[str, SparseVectorParams]] = None, strict_mode_config: Optional[StrictModeConfig] = None)[source]

Bases: BaseModel

Operation for updating parameters of the existing collection

hnsw_config: Optional[HnswConfigDiff]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

optimizers_config: Optional[OptimizersConfigDiff]
params: Optional[CollectionParamsDiff]
quantization_config: Optional[QuantizationConfigDiff]
sparse_vectors: Optional[SparseVectorsConfig]
strict_mode_config: Optional[StrictModeConfig]
vectors: Optional[VectorsConfigDiff]
class UpdateOperations(*, operations: List[Union[UpsertOperation, DeleteOperation, SetPayloadOperation, OverwritePayloadOperation, DeletePayloadOperation, ClearPayloadOperation, UpdateVectorsOperation, DeleteVectorsOperation]])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

operations: List[UpdateOperation]
class UpdateResult(*, operation_id: Optional[int] = None, status: UpdateStatus)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

operation_id: Optional[int]
status: UpdateStatus
class UpdateStatus(value)[source]

Bases: str, Enum

Acknowledged - Request is saved to WAL and will be process in a queue. Completed - Request is completed, changes are actual.

ACKNOWLEDGED = 'acknowledged'
COMPLETED = 'completed'
class UpdateVectors(*, points: List[PointVectors], shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

points: List[PointVectors]
shard_key: Optional[ShardKeySelector]
class UpdateVectorsOperation(*, update_vectors: UpdateVectors)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

update_vectors: UpdateVectors
class UpsertOperation(*, upsert: Union[PointsBatch, PointsList])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

upsert: PointInsertOperations
class UuidIndexParams(*, type: UuidIndexType, is_tenant: Optional[bool] = None, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

is_tenant: Optional[bool]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
type: UuidIndexType
class UuidIndexType(value)[source]

Bases: str, Enum

An enumeration.

UUID = 'uuid'
class ValuesCount(*, lt: Optional[int] = None, gt: Optional[int] = None, gte: Optional[int] = None, lte: Optional[int] = None)[source]

Bases: BaseModel

Values count filter request

gt: Optional[int]
gte: Optional[int]
lt: Optional[int]
lte: Optional[int]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class VectorDataConfig(*, size: int, distance: Distance, storage_type: Union[VectorStorageTypeOneOf, VectorStorageTypeOneOf1, VectorStorageTypeOneOf2, VectorStorageTypeOneOf3], index: Union[IndexesOneOf, IndexesOneOf1], quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, multivector_config: Optional[MultiVectorConfig] = None, datatype: Optional[VectorStorageDatatype] = None)[source]

Bases: BaseModel

Config of single vector data storage

datatype: Optional[VectorStorageDatatype]
distance: Distance
index: Indexes
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

multivector_config: Optional[MultiVectorConfig]
quantization_config: Optional[QuantizationConfig]
size: int
storage_type: VectorStorageType
class VectorDataInfo(*, num_vectors: int, num_indexed_vectors: int, num_deleted_vectors: int)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

num_deleted_vectors: int
num_indexed_vectors: int
num_vectors: int
class VectorIndexSearchesTelemetry(*, index_name: Optional[str] = None, unfiltered_plain: OperationDurationStatistics, unfiltered_hnsw: OperationDurationStatistics, unfiltered_sparse: OperationDurationStatistics, filtered_plain: OperationDurationStatistics, filtered_small_cardinality: OperationDurationStatistics, filtered_large_cardinality: OperationDurationStatistics, filtered_exact: OperationDurationStatistics, filtered_sparse: OperationDurationStatistics, unfiltered_exact: OperationDurationStatistics)[source]

Bases: BaseModel

filtered_exact: OperationDurationStatistics
filtered_large_cardinality: OperationDurationStatistics
filtered_plain: OperationDurationStatistics
filtered_small_cardinality: OperationDurationStatistics
filtered_sparse: OperationDurationStatistics
index_name: Optional[str]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

unfiltered_exact: OperationDurationStatistics
unfiltered_hnsw: OperationDurationStatistics
unfiltered_plain: OperationDurationStatistics
unfiltered_sparse: OperationDurationStatistics
class VectorParams(*, size: int, distance: Distance, hnsw_config: Optional[HnswConfigDiff] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, on_disk: Optional[bool] = None, datatype: Optional[Datatype] = None, multivector_config: Optional[MultiVectorConfig] = None)[source]

Bases: BaseModel

Params of single vector data storage

datatype: Optional[Datatype]
distance: Distance
hnsw_config: Optional[HnswConfigDiff]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

multivector_config: Optional[MultiVectorConfig]
on_disk: Optional[bool]
quantization_config: Optional[QuantizationConfig]
size: int
class VectorParamsDiff(*, hnsw_config: Optional[HnswConfigDiff] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization, Disabled]] = None, on_disk: Optional[bool] = None)[source]

Bases: BaseModel

hnsw_config: Optional[HnswConfigDiff]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

on_disk: Optional[bool]
quantization_config: Optional[QuantizationConfigDiff]
class VectorStorageDatatype(value)[source]

Bases: str, Enum

Storage types for vectors

FLOAT16 = 'float16'
FLOAT32 = 'float32'
UINT8 = 'uint8'
class VectorStorageTypeOneOf(value)[source]

Bases: str, Enum

Storage in memory (RAM) Will be very fast at the cost of consuming a lot of memory.

MEMORY = 'Memory'
class VectorStorageTypeOneOf1(value)[source]

Bases: str, Enum

Storage in mmap file, not appendable Search performance is defined by disk speed and the fraction of vectors that fit in memory.

MMAP = 'Mmap'
class VectorStorageTypeOneOf2(value)[source]

Bases: str, Enum

Storage in chunked mmap files, appendable Search performance is defined by disk speed and the fraction of vectors that fit in memory.

CHUNKEDMMAP = 'ChunkedMmap'
class VectorStorageTypeOneOf3(value)[source]

Bases: str, Enum

Same as ChunkedMmap, but vectors are forced to be locked in RAM In this way we avoid cold requests to disk, but risk to run out of memory Designed as a replacement for Memory, which doesn't depend on RocksDB

INRAMCHUNKEDMMAP = 'InRamChunkedMmap'
class VersionInfo(*, title: str, version: str, commit: Optional[str] = None)[source]

Bases: BaseModel

commit: Optional[str]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

title: str
version: str
class WalConfig(*, wal_capacity_mb: int, wal_segments_ahead: int)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

wal_capacity_mb: int
wal_segments_ahead: int
class WalConfigDiff(*, wal_capacity_mb: Optional[int] = None, wal_segments_ahead: Optional[int] = None)[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

wal_capacity_mb: Optional[int]
wal_segments_ahead: Optional[int]
class WebApiTelemetry(*, responses: Dict[str, Dict[str, OperationDurationStatistics]])[source]

Bases: BaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

responses: Dict[str, Dict[str, OperationDurationStatistics]]
class WithLookup(*, collection: str, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vectors: Optional[Union[bool, List[str]]] = None)[source]

Bases: BaseModel

collection: str
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

with_payload: Optional[WithPayloadInterface]
with_vectors: Optional[WithVector]
class WriteOrdering(value)[source]

Bases: str, Enum

Defines write ordering guarantees for collection operations * weak - write operations may be reordered, works faster, default * medium - write operations go through dynamically selected leader, may be inconsistent for a short period of time in case of leader change * strong - Write operations go through the permanent leader, consistent, but may be unavailable if leader is down

MEDIUM = 'medium'
STRONG = 'strong'
WEAK = 'weak'

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community