Shortcuts

qdrant_client.local.async_qdrant_local module

class AsyncQdrantLocal(location: str, force_disable_check_same_thread: bool = False)[source]

Bases: AsyncQdrantBase

Everything Qdrant server can do, but locally.

Use this implementation to run vector search without running a Qdrant server. Everything that works with local Qdrant will work with server Qdrant as well.

Use for small-scale data, demos, and tests. If you need more speed or size, use Qdrant server.

async batch_update_points(collection_name: str, update_operations: Sequence[Union[UpsertOperation, DeleteOperation, SetPayloadOperation, OverwritePayloadOperation, DeletePayloadOperation, ClearPayloadOperation, UpdateVectorsOperation, DeleteVectorsOperation]], **kwargs: Any) list[UpdateResult][source]
async clear_payload(collection_name: str, points_selector: Union[list[Union[int, str, points_pb2.PointId]], Filter, Filter, PointIdsList, FilterSelector, PointsSelector], **kwargs: Any) UpdateResult[source]
async close(**kwargs: Any) None[source]
async collection_exists(collection_name: str, **kwargs: Any) bool[source]
async count(collection_name: str, count_filter: Optional[Union[Filter, Filter]] = None, exact: bool = True, **kwargs: Any) CountResult[source]
async create_collection(collection_name: str, vectors_config: Union[VectorParams, Mapping[str, VectorParams]], init_from: Optional[Union[InitFrom, str]] = None, sparse_vectors_config: Optional[Mapping[str, SparseVectorParams]] = None, **kwargs: Any) bool[source]
async create_full_snapshot(**kwargs: Any) SnapshotDescription[source]
async create_payload_index(collection_name: str, field_name: str, field_schema: Optional[Union[PayloadSchemaType, KeywordIndexParams, IntegerIndexParams, FloatIndexParams, GeoIndexParams, TextIndexParams, BoolIndexParams, DatetimeIndexParams, UuidIndexParams, int, PayloadIndexParams]] = None, field_type: Optional[Union[PayloadSchemaType, KeywordIndexParams, IntegerIndexParams, FloatIndexParams, GeoIndexParams, TextIndexParams, BoolIndexParams, DatetimeIndexParams, UuidIndexParams, int, PayloadIndexParams]] = None, **kwargs: Any) UpdateResult[source]
async create_shard_key(collection_name: str, shard_key: Union[int, str], shards_number: Optional[int] = None, replication_factor: Optional[int] = None, placement: Optional[list[int]] = None, **kwargs: Any) bool[source]
async create_shard_snapshot(collection_name: str, shard_id: int, **kwargs: Any) Optional[SnapshotDescription][source]
async create_snapshot(collection_name: str, **kwargs: Any) Optional[SnapshotDescription][source]
async delete(collection_name: str, points_selector: Union[list[Union[int, str, points_pb2.PointId]], Filter, Filter, PointIdsList, FilterSelector, PointsSelector], **kwargs: Any) UpdateResult[source]
async delete_collection(collection_name: str, **kwargs: Any) bool[source]
async delete_full_snapshot(snapshot_name: str, **kwargs: Any) bool[source]
async delete_payload(collection_name: str, keys: Sequence[str], points: Union[list[Union[int, str, points_pb2.PointId]], Filter, Filter, PointIdsList, FilterSelector, PointsSelector], **kwargs: Any) UpdateResult[source]
async delete_payload_index(collection_name: str, field_name: str, **kwargs: Any) UpdateResult[source]
async delete_shard_key(collection_name: str, shard_key: Union[int, str], **kwargs: Any) bool[source]
async delete_shard_snapshot(collection_name: str, shard_id: int, snapshot_name: str, **kwargs: Any) bool[source]
async delete_snapshot(collection_name: str, snapshot_name: str, **kwargs: Any) bool[source]
async delete_vectors(collection_name: str, vectors: Sequence[str], points: Union[list[Union[int, str, points_pb2.PointId]], Filter, Filter, PointIdsList, FilterSelector, PointsSelector], **kwargs: Any) UpdateResult[source]
async discover(collection_name: str, target: Optional[Union[int, str, List[float], SparseVector, TargetVector]] = None, context: Optional[Sequence[Union[ContextExamplePair, ContextExamplePair]]] = None, query_filter: Optional[Union[Filter, Filter]] = None, search_params: Optional[Union[SearchParams, SearchParams]] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, using: Optional[str] = None, lookup_from: Optional[Union[LookupLocation, LookupLocation]] = None, consistency: Optional[Union[int, ReadConsistencyType]] = None, timeout: Optional[int] = None, **kwargs: Any) list[ScoredPoint][source]
async discover_batch(collection_name: str, requests: Sequence[Union[DiscoverRequest, DiscoverPoints]], **kwargs: Any) list[list[ScoredPoint]][source]
async facet(collection_name: str, key: str, facet_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10, exact: bool = False, **kwargs: Any) FacetResponse[source]
async get_aliases(**kwargs: Any) CollectionsAliasesResponse[source]
async get_collection(collection_name: str, **kwargs: Any) CollectionInfo[source]
async get_collection_aliases(collection_name: str, **kwargs: Any) CollectionsAliasesResponse[source]
async get_collections(**kwargs: Any) CollectionsResponse[source]
async get_locks(**kwargs: Any) LocksOption[source]
async info() VersionInfo[source]
async list_full_snapshots(**kwargs: Any) list[SnapshotDescription][source]
async list_shard_snapshots(collection_name: str, shard_id: int, **kwargs: Any) list[SnapshotDescription][source]
async list_snapshots(collection_name: str, **kwargs: Any) list[SnapshotDescription][source]
async lock_storage(reason: str, **kwargs: Any) LocksOption[source]
async overwrite_payload(collection_name: str, payload: Dict[str, Any], points: Union[list[Union[int, str, points_pb2.PointId]], Filter, Filter, PointIdsList, FilterSelector, PointsSelector], **kwargs: Any) UpdateResult[source]
async query_batch_points(collection_name: str, requests: Sequence[Union[QueryRequest, QueryPoints]], **kwargs: Any) list[QueryResponse][source]
async query_points(collection_name: str, query: Optional[Union[NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, SampleQuery]] = None, using: Optional[str] = None, prefetch: Optional[Union[Prefetch, list[Prefetch]]] = None, query_filter: Optional[Union[Filter, Filter]] = None, search_params: Optional[Union[SearchParams, SearchParams]] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, lookup_from: Optional[Union[LookupLocation, LookupLocation]] = None, **kwargs: Any) QueryResponse[source]
async query_points_groups(collection_name: str, group_by: str, query: Optional[Union[int, str, PointId, list[float], list[list[float]], SparseVector, NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, SampleQuery, ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], Document, Image, InferenceObject]] = None, using: Optional[str] = None, prefetch: Optional[Union[Prefetch, list[Prefetch]]] = None, query_filter: Optional[Union[Filter, Filter]] = None, search_params: Optional[Union[SearchParams, SearchParams]] = None, limit: int = 10, group_size: int = 3, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[Union[str, WithLookup]] = None, lookup_from: Optional[Union[LookupLocation, LookupLocation]] = None, **kwargs: Any) GroupsResult[source]
async recommend(collection_name: str, positive: Optional[Sequence[Union[int, str, List[float], SparseVector]]] = None, negative: Optional[Sequence[Union[int, str, List[float], SparseVector]]] = None, query_filter: Optional[Union[Filter, Filter]] = None, search_params: Optional[Union[SearchParams, SearchParams]] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, list[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, list[str]] = False, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[Union[LookupLocation, LookupLocation]] = None, strategy: Optional[RecommendStrategy] = None, **kwargs: Any) list[ScoredPoint][source]
async recommend_batch(collection_name: str, requests: Sequence[Union[RecommendRequest, RecommendPoints]], **kwargs: Any) list[list[ScoredPoint]][source]
async recommend_groups(collection_name: str, group_by: str, positive: Optional[Sequence[Union[int, str, PointId, list[float]]]] = None, negative: Optional[Sequence[Union[int, str, PointId, list[float]]]] = None, query_filter: Optional[Union[Filter, Filter]] = None, search_params: Optional[Union[SearchParams, SearchParams]] = None, limit: int = 10, group_size: int = 1, score_threshold: Optional[float] = None, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, using: Optional[str] = None, lookup_from: Optional[Union[LookupLocation, LookupLocation]] = None, with_lookup: Optional[Union[str, WithLookup]] = None, strategy: Optional[RecommendStrategy] = None, **kwargs: Any) GroupsResult[source]
async recover_shard_snapshot(collection_name: str, shard_id: int, location: str, **kwargs: Any) bool[source]
async recover_snapshot(collection_name: str, location: str, **kwargs: Any) bool[source]
async recreate_collection(collection_name: str, vectors_config: Union[VectorParams, Mapping[str, VectorParams]], init_from: Optional[Union[InitFrom, str]] = None, sparse_vectors_config: Optional[Mapping[str, SparseVectorParams]] = None, **kwargs: Any) bool[source]
async retrieve(collection_name: str, ids: Sequence[Union[int, str, PointId]], with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, **kwargs: Any) list[Record][source]
async scroll(collection_name: str, scroll_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10, order_by: Optional[Union[str, OrderBy, OrderBy]] = None, offset: Optional[Union[int, str, PointId]] = None, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, **kwargs: Any) tuple[list[Record], Union[int, str, points_pb2.PointId, NoneType]][source]
async search(collection_name: str, query_vector: Union[ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], Sequence[float], tuple[str, list[float]], NamedVector, NamedSparseVector], query_filter: Optional[Union[Filter, Filter]] = None, search_params: Optional[Union[SearchParams, SearchParams]] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, **kwargs: Any) list[ScoredPoint][source]
async search_batch(collection_name: str, requests: Sequence[Union[SearchRequest, SearchPoints]], **kwargs: Any) list[list[ScoredPoint]][source]
async search_groups(collection_name: str, query_vector: Union[ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], Sequence[float], tuple[str, list[float]], NamedVector], group_by: str, query_filter: Optional[Filter] = None, search_params: Optional[SearchParams] = None, limit: int = 10, group_size: int = 1, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[Union[str, WithLookup]] = None, **kwargs: Any) GroupsResult[source]
async search_matrix_offsets(collection_name: str, query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, **kwargs: Any) SearchMatrixOffsetsResponse[source]
async search_matrix_pairs(collection_name: str, query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None, **kwargs: Any) SearchMatrixPairsResponse[source]
async set_payload(collection_name: str, payload: Dict[str, Any], points: Union[list[Union[int, str, points_pb2.PointId]], Filter, Filter, PointIdsList, FilterSelector, PointsSelector], key: Optional[str] = None, **kwargs: Any) UpdateResult[source]
async unlock_storage(**kwargs: Any) LocksOption[source]
async update_collection(collection_name: str, sparse_vectors_config: Optional[Mapping[str, SparseVectorParams]] = None, **kwargs: Any) bool[source]
async update_collection_aliases(change_aliases_operations: Sequence[Union[CreateAliasOperation, RenameAliasOperation, DeleteAliasOperation, AliasOperations]], **kwargs: Any) bool[source]
async update_vectors(collection_name: str, points: Sequence[PointVectors], **kwargs: Any) UpdateResult[source]
upload_collection(collection_name: str, vectors: Union[dict[str, numpy.ndarray[tuple[int, ...], numpy.dtype[Union[numpy.bool, numpy.int8, numpy.int16, numpy.int32, numpy.int64, numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64, numpy.float16, numpy.float32, numpy.float64, numpy.longdouble]]]], ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], Iterable[Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]], Document, Image, InferenceObject]], Document, Image, InferenceObject]]], payload: Optional[Iterable[dict[Any, Any]]] = None, ids: Optional[Iterable[Union[int, str, PointId]]] = None, **kwargs: Any) None[source]
upload_points(collection_name: str, points: Iterable[PointStruct], **kwargs: Any) None[source]
upload_records(collection_name: str, records: Iterable[Record], **kwargs: Any) None[source]
async upsert(collection_name: str, points: Union[Batch, Sequence[Union[PointStruct, PointStruct]]], **kwargs: Any) UpdateResult[source]
LARGE_DATA_THRESHOLD = 20000
property closed: bool

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community