import json
import math
import uuid
from collections import OrderedDict, defaultdict
from typing import (
Any,
Callable,
Optional,
Sequence,
Union,
get_args,
)
from copy import deepcopy
import numpy as np
from qdrant_client import grpc as grpc
from qdrant_client.common.client_warnings import show_warning_once
from qdrant_client._pydantic_compat import construct, to_jsonable_python as _to_jsonable_python
from qdrant_client.conversions import common_types as types
from qdrant_client.conversions.common_types import get_args_subscribed
from qdrant_client.conversions.conversion import GrpcToRest
from qdrant_client.http import models
from qdrant_client.http.models import ScoredPoint
from qdrant_client.http.models.models import Distance, ExtendedPointId, SparseVector, OrderValue
from qdrant_client.hybrid.fusion import reciprocal_rank_fusion, distribution_based_score_fusion
from qdrant_client.local.distances import (
ContextPair,
ContextQuery,
DenseQueryVector,
DiscoveryQuery,
DistanceOrder,
RecoQuery,
calculate_context_scores,
calculate_discovery_scores,
calculate_distance,
calculate_recommend_best_scores,
distance_to_order,
)
from qdrant_client.local.multi_distances import (
MultiQueryVector,
MultiRecoQuery,
MultiDiscoveryQuery,
MultiContextQuery,
MultiContextPair,
calculate_multi_distance,
calculate_multi_recommend_best_scores,
calculate_multi_discovery_scores,
calculate_multi_context_scores,
)
from qdrant_client.local.json_path_parser import JsonPathItem, parse_json_path
from qdrant_client.local.order_by import to_order_value
from qdrant_client.local.payload_filters import calculate_payload_mask
from qdrant_client.local.payload_value_extractor import value_by_key, parse_uuid
from qdrant_client.local.payload_value_setter import set_value_by_key
from qdrant_client.local.persistence import CollectionPersistence
from qdrant_client.local.sparse import (
empty_sparse_vector,
sort_sparse_vector,
validate_sparse_vector,
)
from qdrant_client.local.sparse_distances import (
SparseContextPair,
SparseContextQuery,
SparseDiscoveryQuery,
SparseQueryVector,
SparseRecoQuery,
calculate_distance_sparse,
calculate_sparse_context_scores,
calculate_sparse_discovery_scores,
calculate_sparse_recommend_best_scores,
merge_positive_and_negative_avg,
sparse_avg,
)
DEFAULT_VECTOR_NAME = ""
EPSILON = 1.1920929e-7 # https://doc.rust-lang.org/std/f32/constant.EPSILON.html
# https://github.com/qdrant/qdrant/blob/7164ac4a5987d28f1c93f5712aef8e09e7d93555/lib/segment/src/spaces/simple_avx.rs#L99C10-L99C10
[docs]def to_jsonable_python(x: Any) -> Any:
try:
return json.loads(json.dumps(x, allow_nan=True))
except Exception:
return json.loads(json.dumps(x, allow_nan=True, default=_to_jsonable_python))
[docs]class LocalCollection:
"""
LocalCollection is a class that represents a collection of vectors in the local storage.
"""
LARGE_DATA_THRESHOLD = 20_000
def __init__(
self,
config: models.CreateCollection,
location: Optional[str] = None,
force_disable_check_same_thread: bool = False,
) -> None:
"""
Create or load a collection from the local storage.
Args:
location: path to the collection directory. If None, the collection will be created in memory.
force_disable_check_same_thread: force disable check_same_thread for sqlite3 connection. default: False
"""
self.vectors_config, self.multivectors_config = self._resolve_vectors_config(
config.vectors
)
sparse_vectors_config = config.sparse_vectors
self.vectors: dict[str, types.NumpyArray] = {
name: np.zeros((0, params.size), dtype=np.float32)
for name, params in self.vectors_config.items()
}
self.sparse_vectors: dict[str, list[SparseVector]] = (
{name: [] for name, params in sparse_vectors_config.items()}
if sparse_vectors_config is not None
else {}
)
self.sparse_vectors_idf: dict[
str, dict[int, int]
] = {} # vector_name: {idx_in_vocab: doc frequency}
self.multivectors: dict[str, list[types.NumpyArray]] = {
name: [] for name in self.multivectors_config
}
self.payload: list[models.Payload] = []
self.deleted = np.zeros(0, dtype=bool)
self._all_vectors_keys = (
list(self.vectors.keys())
+ list(self.sparse_vectors.keys())
+ list(self.multivectors.keys())
)
self.deleted_per_vector = {
name: np.zeros(0, dtype=bool) for name in self._all_vectors_keys
}
self.ids: dict[models.ExtendedPointId, int] = {} # Mapping from external id to internal id
self.ids_inv: list[models.ExtendedPointId] = [] # Mapping from internal id to external id
self.persistent = location is not None
self.storage = None
self.config = config
if location is not None:
self.storage = CollectionPersistence(location, force_disable_check_same_thread)
self.load_vectors()
@staticmethod
def _resolve_vectors_config(
vectors: dict[str, models.VectorParams],
) -> tuple[dict[str, models.VectorParams], dict[str, models.VectorParams]]:
vectors_config = {}
multivectors_config = {}
if isinstance(vectors, models.VectorParams):
if vectors.multivector_config is not None:
multivectors_config = {DEFAULT_VECTOR_NAME: vectors}
else:
vectors_config = {DEFAULT_VECTOR_NAME: vectors}
return vectors_config, multivectors_config
for name, params in vectors.items():
if params.multivector_config is not None:
multivectors_config[name] = params
else:
vectors_config[name] = params
return vectors_config, multivectors_config
[docs] def close(self) -> None:
if self.storage is not None:
self.storage.close()
def _update_idf_append(self, vector: SparseVector, vector_name: str) -> None:
if vector_name not in self.sparse_vectors_idf:
self.sparse_vectors_idf[vector_name] = defaultdict(int)
for idx in vector.indices:
self.sparse_vectors_idf[vector_name][idx] += 1
def _update_idf_remove(self, vector: SparseVector, vector_name: str) -> None:
for idx in vector.indices:
self.sparse_vectors_idf[vector_name][idx] -= 1
@classmethod
def _compute_idf(cls, df: int, n: int) -> float:
# ((n - df + 0.5) / (df + 0.5) + 1.).ln()
return math.log((n - df + 0.5) / (df + 0.5) + 1)
def _rescore_idf(self, vector: SparseVector, vector_name: str) -> SparseVector:
num_docs = self.count(count_filter=None).count
new_values = []
idf_store = self.sparse_vectors_idf[vector_name]
for idx, value in zip(vector.indices, vector.values):
document_frequency = idf_store.get(idx, 0)
idf = self._compute_idf(document_frequency, num_docs)
new_values.append(value * idf)
return SparseVector(indices=vector.indices, values=new_values)
[docs] def load_vectors(self) -> None:
if self.storage is not None:
vectors = defaultdict(list)
sparse_vectors = defaultdict(list)
multivectors = defaultdict(list)
deleted_ids = []
for idx, point in enumerate(self.storage.load()):
# id tracker
self.ids[point.id] = idx
# no gaps in idx
self.ids_inv.append(point.id)
# payload tracker
self.payload.append(to_jsonable_python(point.payload) or {})
# persisted named vectors
loaded_vector = point.vector
# add default name to anonymous dense or multivector
if isinstance(point.vector, list):
loaded_vector = {DEFAULT_VECTOR_NAME: point.vector}
# handle dense vectors
all_dense_vector_names = list(self.vectors.keys())
for name in all_dense_vector_names:
v = loaded_vector.get(name)
if v is not None:
vectors[name].append(v)
else:
vectors[name].append(
np.ones(self.vectors_config[name].size, dtype=np.float32)
)
deleted_ids.append((idx, name))
# handle sparse vectors
all_sparse_vector_names = list(self.sparse_vectors.keys())
for name in all_sparse_vector_names:
v = loaded_vector.get(name)
if v is not None:
sparse_vectors[name].append(v)
else:
sparse_vectors[name].append(empty_sparse_vector())
deleted_ids.append((idx, name))
# handle multivectors
all_multivector_names = list(self.multivectors.keys())
for name in all_multivector_names:
v = loaded_vector.get(name)
if v is not None:
multivectors[name].append(v)
else:
multivectors[name].append(np.array([]))
deleted_ids.append((idx, name))
# setup dense vectors by name
for name, named_vectors in vectors.items():
self.vectors[name] = np.array(named_vectors)
self.deleted_per_vector[name] = np.zeros(len(self.payload), dtype=bool)
# setup sparse vectors by name
for name, named_vectors in sparse_vectors.items():
self.sparse_vectors[name] = named_vectors
self.deleted_per_vector[name] = np.zeros(len(self.payload), dtype=bool)
for vector in named_vectors:
self._update_idf_append(vector, name)
# setup multivectors by name
for name, named_vectors in multivectors.items():
self.multivectors[name] = [np.array(vector) for vector in named_vectors]
self.deleted_per_vector[name] = np.zeros(len(self.payload), dtype=bool)
# track deleted points by named vector
for idx, name in deleted_ids:
self.deleted_per_vector[name][idx] = 1
self.deleted = np.zeros(len(self.payload), dtype=bool)
@classmethod
def _resolve_query_vector_name(
cls,
query_vector: Union[
list[float],
tuple[str, list[float]],
list[list[float]],
tuple[str, list[list[float]]],
types.NamedVector,
types.NamedSparseVector,
DenseQueryVector,
tuple[str, DenseQueryVector],
tuple[str, SparseQueryVector],
MultiQueryVector,
tuple[str, MultiQueryVector],
types.NumpyArray,
],
) -> tuple[
str, Union[DenseQueryVector, SparseQueryVector, MultiQueryVector, types.NumpyArray]
]:
# SparseQueryVector is not in the method's signature, because sparse vectors can only be used as named vectors,
# and there is no default name for them
vector: Union[DenseQueryVector, SparseQueryVector, MultiQueryVector, types.NumpyArray]
if isinstance(query_vector, tuple):
name, query = query_vector
if isinstance(query, list):
vector = np.array(query)
else:
vector = query
elif isinstance(query_vector, np.ndarray):
name = DEFAULT_VECTOR_NAME
vector = query_vector
elif isinstance(query_vector, types.NamedVector):
name = query_vector.name
vector = np.array(query_vector.vector)
elif isinstance(query_vector, types.NamedSparseVector):
name = query_vector.name
vector = query_vector.vector
elif isinstance(query_vector, list):
name = DEFAULT_VECTOR_NAME
vector = np.array(query_vector)
elif isinstance(query_vector, get_args(DenseQueryVector)):
name = DEFAULT_VECTOR_NAME
vector = query_vector
elif isinstance(query_vector, get_args(MultiQueryVector)):
name = DEFAULT_VECTOR_NAME
vector = query_vector
else:
raise ValueError(f"Unsupported vector type {type(query_vector)}")
return name, vector
[docs] def get_vector_params(self, name: str) -> models.VectorParams:
if isinstance(self.config.vectors, dict):
if name in self.config.vectors:
return self.config.vectors[name]
else:
raise ValueError(f"Vector {name} is not found in the collection")
if isinstance(self.config.vectors, models.VectorParams):
if name != DEFAULT_VECTOR_NAME:
raise ValueError(f"Vector {name} is not found in the collection")
return self.config.vectors
raise ValueError(f"Malformed config.vectors: {self.config.vectors}")
@classmethod
def _check_include_pattern(cls, pattern: str, key: str) -> bool:
"""
>>> LocalCollection._check_include_pattern('a', 'a')
True
>>> LocalCollection._check_include_pattern('a.b', 'b')
False
>>> LocalCollection._check_include_pattern('a.b', 'a.b')
True
>>> LocalCollection._check_include_pattern('a.b', 'a.b.c')
True
>>> LocalCollection._check_include_pattern('a.b[]', 'a.b[].c')
True
>>> LocalCollection._check_include_pattern('a.b[]', 'a.b.c')
False
>>> LocalCollection._check_include_pattern('a', 'a.b')
True
>>> LocalCollection._check_include_pattern('a.b', 'a')
True
>>> LocalCollection._check_include_pattern('a', 'aa.b.c')
False
>>> LocalCollection._check_include_pattern('a_b', 'a')
False
"""
pattern_parts = pattern.replace(".", "[.").split("[")
key_parts = key.replace(".", "[.").split("[")
return all(p == v for p, v in zip(pattern_parts, key_parts))
@classmethod
def _check_exclude_pattern(cls, pattern: str, key: str) -> bool:
if len(pattern) > len(key):
return False
pattern_parts = pattern.replace(".", "[.").split("[")
key_parts = key.replace(".", "[.").split("[")
return all(p == v for p, v in zip(pattern_parts, key_parts))
@classmethod
def _filter_payload(
cls, payload: Any, predicate: Callable[[str], bool], path: str = ""
) -> Any:
if isinstance(payload, dict):
res = {}
if path != "":
new_path = path + "."
else:
new_path = path
for key, value in payload.items():
if predicate(new_path + key):
res[key] = cls._filter_payload(value, predicate, new_path + key)
return res
elif isinstance(payload, list):
res_array = []
path = path + "[]"
for idx, value in enumerate(payload):
if predicate(path):
res_array.append(cls._filter_payload(value, predicate, path))
return res_array
else:
return payload
@classmethod
def _process_payload(
cls,
payload: dict,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
) -> Optional[dict]:
if not with_payload:
return None
if isinstance(with_payload, bool):
return payload
if isinstance(with_payload, list):
return cls._filter_payload(
payload,
lambda key: any(
map(lambda pattern: cls._check_include_pattern(pattern, key), with_payload) # type: ignore
),
)
if isinstance(with_payload, models.PayloadSelectorInclude):
return cls._filter_payload(
payload,
lambda key: any(
map(
lambda pattern: cls._check_include_pattern(pattern, key),
with_payload.include, # type: ignore
)
),
)
if isinstance(with_payload, models.PayloadSelectorExclude):
return cls._filter_payload(
payload,
lambda key: all(
map(
lambda pattern: not cls._check_exclude_pattern(pattern, key),
with_payload.exclude, # type: ignore
)
),
)
return payload
def _get_payload(
self,
idx: int,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
return_copy: bool = True,
) -> Optional[models.Payload]:
payload = self.payload[idx]
processed_payload = self._process_payload(payload, with_payload)
return deepcopy(processed_payload) if return_copy else processed_payload
def _get_vectors(
self, idx: int, with_vectors: Union[bool, Sequence[str], None] = False
) -> Optional[models.VectorStruct]:
if with_vectors is False or with_vectors is None:
return None
dense_vectors = {
name: self.vectors[name][idx].tolist()
for name in self.vectors
if not self.deleted_per_vector[name][idx]
}
sparse_vectors = {
name: self.sparse_vectors[name][idx]
for name in self.sparse_vectors
if not self.deleted_per_vector[name][idx]
}
multivectors = {
name: self.multivectors[name][idx].tolist()
for name in self.multivectors
if not self.deleted_per_vector[name][idx]
}
# merge vectors
all_vectors = {**dense_vectors, **sparse_vectors, **multivectors}
if isinstance(with_vectors, list):
all_vectors = {name: all_vectors[name] for name in with_vectors if name in all_vectors}
if len(all_vectors) == 1 and DEFAULT_VECTOR_NAME in all_vectors:
return all_vectors[DEFAULT_VECTOR_NAME]
return all_vectors
def _payload_and_non_deleted_mask(
self,
payload_filter: Optional[models.Filter],
vector_name: Optional[str] = None,
) -> np.ndarray:
"""
Calculate mask for filtered payload and non-deleted points. True - accepted, False - rejected
"""
payload_mask = calculate_payload_mask(
payloads=self.payload,
payload_filter=payload_filter,
ids_inv=self.ids_inv,
deleted_per_vector=self.deleted_per_vector,
)
# in deleted: 1 - deleted, 0 - not deleted
# in payload_mask: 1 - accepted, 0 - rejected
# in mask: 1 - ok, 0 - rejected
mask = payload_mask & ~self.deleted
if vector_name is not None:
# in deleted: 1 - deleted, 0 - not deleted
mask = mask & ~self.deleted_per_vector[vector_name]
return mask
[docs] def search(
self,
query_vector: Union[
list[float],
tuple[str, list[float]],
list[list[float]],
tuple[str, list[list[float]]],
types.NamedVector,
types.NamedSparseVector,
DenseQueryVector,
tuple[str, DenseQueryVector],
SparseQueryVector,
tuple[str, SparseQueryVector],
MultiQueryVector,
tuple[str, MultiQueryVector],
types.NumpyArray,
],
query_filter: Optional[types.Filter] = None,
limit: int = 10,
offset: Optional[int] = None,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
score_threshold: Optional[float] = None,
) -> list[models.ScoredPoint]:
name, query_vector = self._resolve_query_vector_name(query_vector)
result: list[models.ScoredPoint] = []
sparse_scoring = False
rescore_idf = False
# early exit if the named vector does not exist
if isinstance(query_vector, get_args(SparseQueryVector)):
if name not in self.sparse_vectors:
raise ValueError(f"Sparse vector {name} is not found in the collection")
vectors = self.sparse_vectors[name]
if self.config.sparse_vectors[name].modifier == models.Modifier.IDF:
rescore_idf = True
distance = Distance.DOT
sparse_scoring = True
elif isinstance(query_vector, get_args(MultiQueryVector)) or (
isinstance(query_vector, np.ndarray) and len(query_vector.shape) == 2
):
if name not in self.multivectors:
raise ValueError(f"Multivector {name} is not found in the collection")
vectors = self.multivectors[name]
distance = self.get_vector_params(name).distance
else:
if name not in self.vectors:
raise ValueError(f"Dense vector {name} is not found in the collection")
vectors = self.vectors[name]
distance = self.get_vector_params(name).distance
vectors = vectors[: len(self.payload)]
if isinstance(query_vector, np.ndarray):
if len(query_vector.shape) == 1:
scores = calculate_distance(query_vector, vectors, distance)
else:
scores = calculate_multi_distance(query_vector, vectors, distance)
elif isinstance(query_vector, RecoQuery):
scores = calculate_recommend_best_scores(query_vector, vectors, distance)
elif isinstance(query_vector, SparseRecoQuery):
if rescore_idf:
query_vector = query_vector.transform_sparse(lambda x: self._rescore_idf(x, name))
scores = calculate_sparse_recommend_best_scores(query_vector, vectors)
elif isinstance(query_vector, MultiRecoQuery):
scores = calculate_multi_recommend_best_scores(query_vector, vectors, distance)
elif isinstance(query_vector, DiscoveryQuery):
scores = calculate_discovery_scores(query_vector, vectors, distance)
elif isinstance(query_vector, SparseDiscoveryQuery):
if rescore_idf:
query_vector = query_vector.transform_sparse(lambda x: self._rescore_idf(x, name))
scores = calculate_sparse_discovery_scores(query_vector, vectors)
elif isinstance(query_vector, MultiDiscoveryQuery):
scores = calculate_multi_discovery_scores(query_vector, vectors, distance)
elif isinstance(query_vector, ContextQuery):
scores = calculate_context_scores(query_vector, vectors, distance)
elif isinstance(query_vector, SparseContextQuery):
if rescore_idf:
query_vector = query_vector.transform_sparse(lambda x: self._rescore_idf(x, name))
scores = calculate_sparse_context_scores(query_vector, vectors)
elif isinstance(query_vector, MultiContextQuery):
scores = calculate_multi_context_scores(query_vector, vectors, distance)
elif isinstance(query_vector, SparseVector):
validate_sparse_vector(query_vector)
if rescore_idf:
query_vector = self._rescore_idf(query_vector, name)
# sparse vector query must be sorted by indices for dot product to work with persisted vectors
query_vector = sort_sparse_vector(query_vector)
scores = calculate_distance_sparse(query_vector, vectors)
else:
raise (ValueError(f"Unsupported query vector type {type(query_vector)}"))
mask = self._payload_and_non_deleted_mask(query_filter, vector_name=name)
required_order = distance_to_order(distance)
if required_order == DistanceOrder.BIGGER_IS_BETTER or isinstance(
query_vector,
(
DiscoveryQuery,
ContextQuery,
RecoQuery,
MultiDiscoveryQuery,
MultiContextQuery,
MultiRecoQuery,
), # sparse structures are not required, sparse always uses DOT
):
order = np.argsort(scores)[::-1]
else:
order = np.argsort(scores)
offset = offset if offset is not None else 0
for idx in order:
if len(result) >= limit + offset:
break
if not mask[idx]:
continue
score = scores[idx]
# skip undefined scores from sparse vectors
if sparse_scoring and score == -np.inf:
continue
point_id = self.ids_inv[idx]
if score_threshold is not None:
if required_order == DistanceOrder.BIGGER_IS_BETTER:
if score < score_threshold:
break
else:
if score > score_threshold:
break
scored_point = construct(
models.ScoredPoint,
id=point_id,
score=float(score),
version=0,
payload=self._get_payload(idx, with_payload),
vector=self._get_vectors(idx, with_vectors),
)
result.append(scored_point)
return result[offset:]
[docs] def query_points(
self,
query: Optional[types.Query] = None,
prefetch: Optional[list[types.Prefetch]] = None,
query_filter: Optional[types.Filter] = None,
limit: int = 10,
offset: int = 0,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
score_threshold: Optional[float] = None,
using: Optional[str] = None,
**kwargs: Any,
) -> types.QueryResponse:
"""
Queries points in the local collection, resolving any prefetches first.
Assumes all vectors have been homogenized so that there are no ids in the inputs
"""
prefetches = []
if prefetch is not None:
prefetches = prefetch if isinstance(prefetch, list) else [prefetch]
if len(prefetches) > 0:
# It is a hybrid/re-scoring query
sources = [self._prefetch(prefetch, offset) for prefetch in prefetches]
# Merge sources
scored_points = self._merge_sources(
sources=sources,
query=query,
limit=limit,
offset=offset,
using=using,
query_filter=query_filter,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
else:
# It is a base query
scored_points = self._query_collection(
query=query,
using=using,
query_filter=query_filter,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
return types.QueryResponse(points=scored_points)
def _prefetch(self, prefetch: types.Prefetch, offset: int) -> list[types.ScoredPoint]:
if prefetch.limit is not None:
prefetch.limit = prefetch.limit + offset
inner_prefetches = []
if prefetch.prefetch is not None:
inner_prefetches = (
prefetch.prefetch if isinstance(prefetch.prefetch, list) else [prefetch.prefetch]
)
if len(inner_prefetches) > 0:
sources = [
self._prefetch(inner_prefetch, offset) for inner_prefetch in inner_prefetches
]
# Merge sources
return self._merge_sources(
sources=sources,
query=prefetch.query,
limit=prefetch.limit,
offset=0,
using=prefetch.using,
query_filter=prefetch.filter,
with_payload=False,
with_vectors=False,
score_threshold=prefetch.score_threshold,
)
else:
# Base case: fetch from collection
return self._query_collection(
query=prefetch.query,
using=prefetch.using,
query_filter=prefetch.filter,
limit=prefetch.limit,
offset=0,
with_payload=False,
with_vectors=False,
score_threshold=prefetch.score_threshold,
)
def _merge_sources(
self,
sources: list[list[types.ScoredPoint]],
query: types.Query,
limit: int,
offset: int,
using: Optional[str] = None,
query_filter: Optional[types.Filter] = None,
score_threshold: Optional[float] = None,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
) -> list[types.ScoredPoint]:
if isinstance(query, models.FusionQuery):
# Fuse results
if query.fusion == models.Fusion.RRF:
# RRF: Reciprocal Rank Fusion
fused = reciprocal_rank_fusion(responses=sources, limit=limit + offset)
elif query.fusion == models.Fusion.DBSF:
# DBSF: Distribution-Based Score Fusion
fused = distribution_based_score_fusion(responses=sources, limit=limit + offset)
else:
raise ValueError(f"Fusion method {query.fusion} does not exist")
# Fetch payload and vectors
ids = [point.id for point in fused]
fetched_points = self.retrieve(
ids, with_payload=with_payload, with_vectors=with_vectors
)
for fetched, scored in zip(fetched_points, fused):
scored.payload = fetched.payload
scored.vector = fetched.vector
return fused[offset:]
else:
# Re-score
sources_ids = set()
for source in sources:
for point in source:
sources_ids.add(point.id)
if len(sources_ids) == 0:
# no need to perform a query if there are no matches for the sources
return []
else:
filter_with_sources = _include_ids_in_filter(query_filter, list(sources_ids))
return self._query_collection(
query=query,
using=using,
query_filter=filter_with_sources,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
def _query_collection(
self,
query: Optional[types.Query] = None,
using: Optional[str] = None,
query_filter: Optional[types.Filter] = None,
limit: Optional[int] = None,
offset: Optional[int] = None,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = False,
with_vectors: Union[bool, Sequence[str]] = False,
score_threshold: Optional[float] = None,
) -> list[types.ScoredPoint]:
"""
Performs the query on the collection, assuming it didn't have any prefetches.
"""
using = using or DEFAULT_VECTOR_NAME
limit = limit or 10
offset = offset or 0
if query is None:
records, _ = self.scroll(
scroll_filter=query_filter,
limit=limit + offset,
with_payload=with_payload,
with_vectors=with_vectors,
)
return [record_to_scored_point(record) for record in records[offset:]]
elif isinstance(query, models.NearestQuery):
return self.search(
query_vector=(using, query.nearest),
query_filter=query_filter,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
elif isinstance(query, models.RecommendQuery):
return self.recommend(
positive=query.recommend.positive,
negative=query.recommend.negative,
strategy=query.recommend.strategy,
using=using,
query_filter=query_filter,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
elif isinstance(query, models.DiscoverQuery):
return self.discover(
target=query.discover.target,
context=query.discover.context,
using=using,
query_filter=query_filter,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
elif isinstance(query, models.ContextQuery):
return self.discover(
context=query.context,
using=using,
query_filter=query_filter,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
elif isinstance(query, models.OrderByQuery):
records, _ = self.scroll(
scroll_filter=query_filter,
order_by=query.order_by,
limit=limit + offset,
with_payload=with_payload,
with_vectors=with_vectors,
)
return [record_to_scored_point(record) for record in records[offset:]]
elif isinstance(query, models.SampleQuery):
if query.sample == models.Sample.RANDOM:
return self._sample_randomly(
limit=limit + offset,
query_filter=query_filter,
with_payload=with_payload,
with_vectors=with_vectors,
)
else:
raise ValueError(f"Unknown Sample variant: {query.sample}")
elif isinstance(query, models.FusionQuery):
raise AssertionError("Cannot perform fusion without prefetches")
else:
# most likely a VectorInput, delegate to search
return self.search(
query_vector=(using, query),
query_filter=query_filter,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
[docs] def query_groups(
self,
group_by: str,
query: Union[
types.PointId,
list[float],
list[list[float]],
types.SparseVector,
types.Query,
types.NumpyArray,
types.Document,
types.Image,
types.InferenceObject,
None,
] = None,
using: Optional[str] = None,
prefetch: Union[types.Prefetch, list[types.Prefetch], None] = None,
query_filter: Optional[types.Filter] = None,
limit: int = 10,
group_size: int = 3,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
score_threshold: Optional[float] = None,
with_lookup: Optional[types.WithLookupInterface] = None,
with_lookup_collection: Optional["LocalCollection"] = None,
) -> models.GroupsResult:
max_limit = len(self.ids_inv)
# rewrite prefetch with larger limit
if prefetch is not None:
if isinstance(prefetch, list):
tmp = []
for p in prefetch:
tmp.append(set_prefetch_limit_recursively(p, max_limit))
prefetch = tmp
else:
prefetch = set_prefetch_limit_recursively(prefetch, max_limit)
points = self.query_points(
query=query,
query_filter=query_filter,
prefetch=prefetch,
using=using,
limit=len(self.ids_inv),
with_payload=True,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
groups = OrderedDict()
for point in points.points:
if not isinstance(point.payload, dict):
continue
group_values = value_by_key(point.payload, group_by)
if group_values is None:
continue
group_values = list(set(v for v in group_values if isinstance(v, (str, int))))
point.payload = self._process_payload(point.payload, with_payload)
for group_value in group_values:
if group_value not in groups:
groups[group_value] = models.PointGroup(id=group_value, hits=[])
if len(groups[group_value].hits) >= group_size:
continue
groups[group_value].hits.append(point)
groups_result: list[models.PointGroup] = list(groups.values())[:limit]
if isinstance(with_lookup, str):
with_lookup = models.WithLookup(
collection=with_lookup,
with_payload=None,
with_vectors=None,
)
if with_lookup is not None and with_lookup_collection is not None:
for group in groups_result:
lookup = with_lookup_collection.retrieve(
ids=[group.id],
with_payload=with_lookup.with_payload,
with_vectors=with_lookup.with_vectors,
)
group.lookup = next(iter(lookup), None)
return models.GroupsResult(groups=groups_result)
[docs] def search_groups(
self,
query_vector: Union[
Sequence[float],
list[list[float]],
tuple[
str,
Union[
models.Vector,
RecoQuery,
SparseRecoQuery,
MultiRecoQuery,
types.NumpyArray,
],
],
types.NamedVector,
types.NamedSparseVector,
RecoQuery,
SparseRecoQuery,
MultiRecoQuery,
types.NumpyArray,
],
group_by: str,
query_filter: Optional[models.Filter] = None,
limit: int = 10,
group_size: int = 1,
with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
score_threshold: Optional[float] = None,
with_lookup: Optional[types.WithLookupInterface] = None,
with_lookup_collection: Optional["LocalCollection"] = None,
) -> models.GroupsResult:
points = self.search(
query_vector=query_vector,
query_filter=query_filter,
limit=len(self.ids_inv),
with_payload=True,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
groups = OrderedDict()
for point in points:
if not isinstance(point.payload, dict):
continue
group_values = value_by_key(point.payload, group_by)
if group_values is None:
continue
group_values = list(set(v for v in group_values if isinstance(v, (str, int))))
point.payload = self._process_payload(point.payload, with_payload)
for group_value in group_values:
if group_value not in groups:
groups[group_value] = models.PointGroup(id=group_value, hits=[])
if len(groups[group_value].hits) >= group_size:
continue
groups[group_value].hits.append(point)
groups_result: list[models.PointGroup] = list(groups.values())[:limit]
if isinstance(with_lookup, str):
with_lookup = models.WithLookup(
collection=with_lookup,
with_payload=None,
with_vectors=None,
)
if with_lookup is not None and with_lookup_collection is not None:
for group in groups_result:
lookup = with_lookup_collection.retrieve(
ids=[group.id],
with_payload=with_lookup.with_payload,
with_vectors=with_lookup.with_vectors,
)
group.lookup = next(iter(lookup), None)
return models.GroupsResult(groups=groups_result)
[docs] def facet(
self,
key: str,
facet_filter: Optional[types.Filter] = None,
limit: int = 10,
) -> types.FacetResponse:
facet_hits: dict[types.FacetValue, int] = defaultdict(int)
mask = self._payload_and_non_deleted_mask(facet_filter)
for idx, payload in enumerate(self.payload):
if not mask[idx]:
continue
if not isinstance(payload, dict):
continue
values = value_by_key(payload, key)
if values is None:
continue
# Only count the same value for each point once
values_set: set[types.FacetValue] = set()
# Sanitize to use only valid values
for v in values:
if type(v) not in get_args_subscribed(types.FacetValue):
continue
# If values are UUIDs, format with hyphens
as_uuid = parse_uuid(v)
if as_uuid:
v = str(as_uuid)
values_set.add(v)
for v in values_set:
facet_hits[v] += 1
hits = [
models.FacetValueHit(value=value, count=count)
for value, count in sorted(
facet_hits.items(),
# order by count descending, then by value ascending
key=lambda x: (-x[1], x[0]),
)[:limit]
]
return types.FacetResponse(hits=hits)
[docs] def retrieve(
self,
ids: Sequence[types.PointId],
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
) -> list[models.Record]:
result = []
for point_id in ids:
if point_id not in self.ids:
continue
idx = self.ids[point_id]
if self.deleted[idx] == 1:
continue
result.append(
models.Record(
id=point_id,
payload=self._get_payload(idx, with_payload),
vector=self._get_vectors(idx, with_vectors),
)
)
return result
def _preprocess_recommend_input(
self,
positive: Optional[Sequence[models.VectorInput]] = None,
negative: Optional[Sequence[models.VectorInput]] = None,
strategy: Optional[types.RecommendStrategy] = None,
query_filter: Optional[types.Filter] = None,
using: Optional[str] = None,
lookup_from_collection: Optional["LocalCollection"] = None,
lookup_from_vector_name: Optional[str] = None,
) -> tuple[
list[list[float]],
list[list[float]],
list[models.SparseVector],
list[models.SparseVector],
list[list[list[float]]],
list[list[list[float]]],
types.Filter,
]:
def examples_into_vectors(
examples: Sequence[models.VectorInput],
acc: Union[list[list[float]], list[models.SparseVector], list[list[list[float]]]],
) -> None:
for example in examples:
if isinstance(example, get_args(types.PointId)):
if example not in collection.ids:
raise ValueError(f"Point {example} is not found in the collection")
idx = collection.ids[example]
vec = collection_vectors[vector_name][idx]
if isinstance(vec, np.ndarray):
vec = vec.tolist()
acc.append(vec)
if collection == self:
mentioned_ids.append(example)
else:
acc.append(example)
collection = lookup_from_collection if lookup_from_collection is not None else self
search_in_vector_name = using if using is not None else DEFAULT_VECTOR_NAME
vector_name = (
lookup_from_vector_name
if lookup_from_vector_name is not None
else search_in_vector_name
)
positive = positive if positive is not None else []
negative = negative if negative is not None else []
# Validate input depending on strategy
if strategy == types.RecommendStrategy.AVERAGE_VECTOR:
if len(positive) == 0:
raise ValueError("Positive list is empty")
elif strategy == types.RecommendStrategy.BEST_SCORE:
if len(positive) == 0 and len(negative) == 0:
raise ValueError("No positive or negative examples given")
# Turn every example into vectors
positive_vectors: list[list[float]] = []
negative_vectors: list[list[float]] = []
sparse_positive_vectors: list[models.SparseVector] = []
sparse_negative_vectors: list[models.SparseVector] = []
positive_multivectors: list[list[list[float]]] = []
negative_multivectors: list[list[list[float]]] = []
mentioned_ids: list[ExtendedPointId] = []
sparse = vector_name in collection.sparse_vectors
multi = vector_name in collection.multivectors
if sparse:
collection_vectors = collection.sparse_vectors
examples_into_vectors(positive, sparse_positive_vectors)
examples_into_vectors(negative, sparse_negative_vectors)
elif multi:
collection_vectors = collection.multivectors
examples_into_vectors(positive, positive_multivectors)
examples_into_vectors(negative, negative_multivectors)
else:
collection_vectors = collection.vectors
examples_into_vectors(positive, positive_vectors)
examples_into_vectors(negative, negative_vectors)
# Edit query filter
query_filter = ignore_mentioned_ids_filter(query_filter, mentioned_ids)
return (
positive_vectors,
negative_vectors,
sparse_positive_vectors,
sparse_negative_vectors,
positive_multivectors,
negative_multivectors,
query_filter,
)
@staticmethod
def _recommend_average_dense(
positive_vectors: list[list[float]], negative_vectors: list[list[float]]
) -> types.NumpyArray:
positive_vectors_np = np.stack(positive_vectors)
negative_vectors_np = np.stack(negative_vectors) if len(negative_vectors) > 0 else None
mean_positive_vector = np.mean(positive_vectors_np, axis=0)
if negative_vectors_np is not None:
vector = (
mean_positive_vector + mean_positive_vector - np.mean(negative_vectors_np, axis=0)
)
else:
vector = mean_positive_vector
return vector
@staticmethod
def _recommend_average_sparse(
positive_vectors: list[models.SparseVector],
negative_vectors: list[models.SparseVector],
) -> models.SparseVector:
for i, vector in enumerate(positive_vectors):
validate_sparse_vector(vector)
positive_vectors[i] = sort_sparse_vector(vector)
for i, vector in enumerate(negative_vectors):
validate_sparse_vector(vector)
negative_vectors[i] = sort_sparse_vector(vector)
mean_positive_vector = sparse_avg(positive_vectors)
if negative_vectors:
mean_negative_vector = sparse_avg(negative_vectors)
vector = merge_positive_and_negative_avg(mean_positive_vector, mean_negative_vector)
else:
vector = mean_positive_vector
return vector
def _construct_recommend_query(
self,
positive: Optional[Sequence[models.VectorInput]] = None,
negative: Optional[Sequence[models.VectorInput]] = None,
query_filter: Optional[types.Filter] = None,
using: Optional[str] = None,
lookup_from_collection: Optional["LocalCollection"] = None,
lookup_from_vector_name: Optional[str] = None,
strategy: Optional[types.RecommendStrategy] = None,
) -> tuple[
Union[RecoQuery, SparseRecoQuery, MultiRecoQuery, models.SparseVector, types.NumpyArray],
types.Filter,
]:
strategy = strategy if strategy is not None else types.RecommendStrategy.AVERAGE_VECTOR
(
positive_vectors,
negative_vectors,
sparse_positive_vectors,
sparse_negative_vectors,
multi_positive_vectors,
multi_negative_vectors,
edited_query_filter,
) = self._preprocess_recommend_input(
positive,
negative,
strategy,
query_filter,
using,
lookup_from_collection,
lookup_from_vector_name,
)
if strategy == types.RecommendStrategy.AVERAGE_VECTOR:
# Validate input
if positive_vectors:
query_vector = self._recommend_average_dense(
positive_vectors,
negative_vectors,
)
elif sparse_positive_vectors:
query_vector = self._recommend_average_sparse(
sparse_positive_vectors,
sparse_negative_vectors,
)
elif multi_positive_vectors:
raise TypeError(
"Multivectors do not support recommend average, consider using "
"strategy=models.RecommendStrategy.BEST_SCORE"
)
else:
raise ValueError("No positive examples given with 'average_vector' strategy")
elif strategy == types.RecommendStrategy.BEST_SCORE:
if positive_vectors or negative_vectors:
query_vector = RecoQuery(
positive=positive_vectors,
negative=negative_vectors,
)
elif sparse_positive_vectors or sparse_negative_vectors:
query_vector = SparseRecoQuery(
positive=sparse_positive_vectors, negative=sparse_negative_vectors
)
elif multi_positive_vectors or multi_negative_vectors:
query_vector = MultiRecoQuery(
positive=multi_positive_vectors, negative=multi_negative_vectors
)
else:
raise ValueError(
"No positive or negative examples given with 'best_score' strategy"
)
else:
raise ValueError(
f"strategy `{strategy}` is not a valid strategy, choose one from {types.RecommendStrategy}"
)
return query_vector, edited_query_filter
[docs] def recommend(
self,
positive: Optional[Sequence[models.VectorInput]] = None,
negative: Optional[Sequence[models.VectorInput]] = None,
query_filter: Optional[types.Filter] = None,
limit: int = 10,
offset: int = 0,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
score_threshold: Optional[float] = None,
using: Optional[str] = None,
lookup_from_collection: Optional["LocalCollection"] = None,
lookup_from_vector_name: Optional[str] = None,
strategy: Optional[types.RecommendStrategy] = None,
) -> list[models.ScoredPoint]:
query_vector, edited_query_filter = self._construct_recommend_query(
positive,
negative,
query_filter,
using,
lookup_from_collection,
lookup_from_vector_name,
strategy,
)
search_in_vector_name = using if using is not None else DEFAULT_VECTOR_NAME
return self.search(
query_vector=(search_in_vector_name, query_vector),
query_filter=edited_query_filter,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
[docs] def recommend_groups(
self,
group_by: str,
positive: Optional[Sequence[models.VectorInput]] = None,
negative: Optional[Sequence[models.VectorInput]] = None,
query_filter: Optional[models.Filter] = None,
limit: int = 10,
group_size: int = 1,
score_threshold: Optional[float] = None,
with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
using: Optional[str] = None,
lookup_from_collection: Optional["LocalCollection"] = None,
lookup_from_vector_name: Optional[str] = None,
with_lookup: Optional[types.WithLookupInterface] = None,
with_lookup_collection: Optional["LocalCollection"] = None,
strategy: Optional[types.RecommendStrategy] = None,
) -> types.GroupsResult:
strategy = strategy if strategy is not None else types.RecommendStrategy.AVERAGE_VECTOR
query_vector, edited_query_filter = self._construct_recommend_query(
positive,
negative,
query_filter,
using,
lookup_from_collection,
lookup_from_vector_name,
strategy,
)
search_in_vector_name = using if using is not None else DEFAULT_VECTOR_NAME
return self.search_groups(
query_vector=(search_in_vector_name, query_vector),
query_filter=edited_query_filter,
group_by=group_by,
group_size=group_size,
limit=limit,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
with_lookup=with_lookup,
with_lookup_collection=with_lookup_collection,
)
[docs] def search_matrix_offsets(
self,
query_filter: Optional[types.Filter] = None,
limit: int = 3,
sample: int = 10,
using: Optional[str] = None,
) -> types.SearchMatrixOffsetsResponse:
ids, all_scores = self._search_distance_matrix(
query_filter=query_filter, limit=limit, sample=sample, using=using
)
offsets_row = []
offsets_col = []
offset_by_id = {point_id: idx for idx, point_id in enumerate(ids)}
for row_offset, scored_points in enumerate(all_scores):
for scored_point in scored_points:
offsets_row.append(row_offset)
offsets_col.append(offset_by_id[scored_point.id])
# flatten the scores
scores = []
for sample_scores in all_scores:
for score in sample_scores:
scores.append(score.score)
return types.SearchMatrixOffsetsResponse(
offsets_row=offsets_row,
offsets_col=offsets_col,
scores=scores,
ids=ids,
)
[docs] def search_matrix_pairs(
self,
query_filter: Optional[types.Filter] = None,
limit: int = 3,
sample: int = 10,
using: Optional[str] = None,
) -> types.SearchMatrixPairsResponse:
ids, all_scores = self._search_distance_matrix(
query_filter=query_filter, limit=limit, sample=sample, using=using
)
pairs = []
for sample_id, sample_scores in list(zip(ids, all_scores)):
for sample_score in sample_scores:
pairs.append(
types.SearchMatrixPair(
a=sample_id, b=sample_score.id, score=sample_score.score
)
)
return types.SearchMatrixPairsResponse(
pairs=pairs,
)
def _search_distance_matrix(
self,
query_filter: Optional[types.Filter] = None,
limit: int = 3,
sample: int = 10,
using: Optional[str] = None,
) -> tuple[list[ExtendedPointId], list[list[ScoredPoint]]]:
samples: list[ScoredPoint] = []
search_in_vector_name = using if using is not None else DEFAULT_VECTOR_NAME
# Sample random points from the whole collection to filter out the ones without vectors
# TODO: use search_filter once with have an HasVector like condition
candidates = self._sample_randomly(
len(self.ids), query_filter, False, search_in_vector_name
)
for candidate in candidates:
# check if enough samples are collected
if len(samples) == sample:
break
# check if the candidate has a vector
if candidate.vector is not None:
samples.append(candidate)
# can't build a matrix with less than 2 results
if len(samples) < 2:
return [], []
# sort samples by id
samples = sorted(samples, key=lambda x: x.id)
# extract the ids
ids = [sample.id for sample in samples]
scores: list[list[ScoredPoint]] = []
# Query `limit` neighbors for each sample
for sampled_id_index, sampled in enumerate(samples):
ids_to_includes = [x for (i, x) in enumerate(ids) if i != sampled_id_index]
sampling_filter = _include_ids_in_filter(query_filter, ids_to_includes)
sampled_vector = sampled.vector
search_vector = (
sampled_vector[search_in_vector_name]
if isinstance(sampled_vector, dict)
else sampled_vector
)
samples_scores = self.search(
query_vector=(search_in_vector_name, search_vector),
query_filter=sampling_filter,
limit=limit,
with_payload=False,
with_vectors=False,
)
scores.append(samples_scores)
return ids, scores
@staticmethod
def _preprocess_target(
target: Optional[models.VectorInput], collection: "LocalCollection", vector_name: str
) -> tuple[models.Vector, types.PointId]:
# todo: context can no longer be grpc.TargetVector, but models.VectorInput, currently, grpc types are not supported
target = (
GrpcToRest.convert_target_vector(target)
if target is not None and isinstance(target, grpc.TargetVector)
else target
)
if isinstance(target, get_args(types.PointId)):
if target not in collection.ids:
raise ValueError(f"Point {target} is not found in the collection")
idx = collection.ids[target]
if vector_name in collection.vectors:
target_vector = collection.vectors[vector_name][idx].tolist()
elif vector_name in collection.sparse_vectors:
target_vector = collection.sparse_vectors[vector_name][idx]
else:
target_vector = collection.multivectors[vector_name][idx].tolist()
return target_vector, target
return target, None
def _preprocess_context(
self, context: list[models.ContextPair], collection: "LocalCollection", vector_name: str
) -> tuple[
list[ContextPair], list[SparseContextPair], list[MultiContextPair], list[types.PointId]
]:
# todo: context can no longer be ContextExamplePair, currently grpc types are not supported
context = [
(
GrpcToRest.convert_context_example_pair(pair)
if isinstance(pair, grpc.ContextExamplePair)
else pair
)
for pair in context
]
mentioned_ids = []
dense_context_vectors = []
sparse_context_vectors = []
multi_context_vectors = []
for pair in context:
pair_vectors = []
for example in [pair.positive, pair.negative]:
if isinstance(example, get_args(types.PointId)):
if example not in collection.ids:
raise ValueError(f"Point {example} is not found in the collection")
idx = collection.ids[example]
if vector_name in collection.vectors:
vector = collection.vectors[vector_name][idx].tolist()
elif vector_name in collection.sparse_vectors:
vector = collection.sparse_vectors[vector_name][idx]
else:
vector = collection.multivectors[vector_name][idx].tolist()
pair_vectors.append(vector)
if collection == self:
mentioned_ids.append(example)
else:
pair_vectors.append(example)
if isinstance(pair_vectors[0], SparseVector) and isinstance(
pair_vectors[1], SparseVector
):
sparse_context_vectors.append(
SparseContextPair(positive=pair_vectors[0], negative=pair_vectors[1])
)
elif isinstance(pair_vectors[0], list) and isinstance(pair_vectors[1], list):
if isinstance(pair_vectors[0][0], float) and isinstance(pair_vectors[1][0], float):
dense_context_vectors.append(
ContextPair(positive=pair_vectors[0], negative=pair_vectors[1])
)
elif isinstance(pair_vectors[0][0], list) and isinstance(pair_vectors[1][0], list):
multi_context_vectors.append(
MultiContextPair(positive=pair_vectors[0], negative=pair_vectors[1])
)
else:
raise ValueError(
"Context example pair must be of the same type: dense, sparse or multi vectors"
)
else:
raise ValueError(
"Context example pair must be of the same type: dense, sparse or multi vectors"
)
if (
sum(
[
bool(sparse_context_vectors),
bool(dense_context_vectors),
bool(multi_context_vectors),
]
)
> 1
):
raise ValueError(
"All context example pairs must be either dense or sparse or multi vectors"
)
return dense_context_vectors, sparse_context_vectors, multi_context_vectors, mentioned_ids
def _preprocess_discover(
self,
target: Optional[models.VectorInput] = None,
context: Optional[Sequence[models.ContextPair]] = None,
query_filter: Optional[types.Filter] = None,
using: Optional[str] = None,
lookup_from_collection: Optional["LocalCollection"] = None,
lookup_from_vector_name: Optional[str] = None,
) -> tuple[
Optional[models.Vector],
list[ContextPair],
list[SparseContextPair],
list[MultiContextPair],
types.Filter,
]:
if target is None and not context:
raise ValueError("No target or context given")
collection = lookup_from_collection if lookup_from_collection is not None else self
search_in_vector_name = using if using is not None else DEFAULT_VECTOR_NAME
vector_name = (
lookup_from_vector_name
if lookup_from_vector_name is not None
else search_in_vector_name
)
target_vector, target_id = self._preprocess_target(target, collection, vector_name)
context = list(context) if context is not None else []
dense_context_vectors, sparse_context_vectors, multi_context_vectors, mentioned_ids = (
self._preprocess_context(context, collection, vector_name)
)
if target_id is not None and collection == self:
mentioned_ids.append(target_id)
# Edit query filter
query_filter = ignore_mentioned_ids_filter(query_filter, mentioned_ids)
return (
target_vector,
dense_context_vectors,
sparse_context_vectors,
multi_context_vectors,
query_filter,
) # type: ignore
[docs] def discover(
self,
target: Optional[models.VectorInput] = None,
context: Optional[Sequence[models.ContextPair]] = None,
query_filter: Optional[types.Filter] = None,
limit: int = 10,
offset: int = 0,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
using: Optional[str] = None,
lookup_from_collection: Optional["LocalCollection"] = None,
lookup_from_vector_name: Optional[str] = None,
score_threshold: Optional[float] = None,
) -> list[models.ScoredPoint]:
(
target_vector,
dense_context_vectors,
sparse_context_vectors,
multi_context_vectors,
edited_query_filter,
) = self._preprocess_discover(
target,
context,
query_filter,
using,
lookup_from_collection,
lookup_from_vector_name,
)
query_vector: Union[DenseQueryVector, SparseQueryVector, MultiQueryVector]
# Discovery search
if target_vector is not None:
if isinstance(target_vector, list):
if isinstance(target_vector[0], float):
query_vector = DiscoveryQuery(target_vector, dense_context_vectors)
else:
query_vector = MultiDiscoveryQuery(target_vector, multi_context_vectors)
elif isinstance(target_vector, SparseVector):
query_vector = SparseDiscoveryQuery(target_vector, sparse_context_vectors)
else:
raise ValueError("Unsupported target vector type")
# Context search
elif target_vector is None and dense_context_vectors:
query_vector = ContextQuery(dense_context_vectors)
elif target_vector is None and sparse_context_vectors:
query_vector = SparseContextQuery(sparse_context_vectors)
elif target_vector is None and multi_context_vectors:
query_vector = MultiContextQuery(multi_context_vectors)
else:
raise ValueError("No target or context given")
search_in_vector_name = using if using is not None else DEFAULT_VECTOR_NAME
return self.search(
query_vector=(search_in_vector_name, query_vector),
query_filter=edited_query_filter,
limit=limit,
offset=offset,
with_payload=with_payload,
with_vectors=with_vectors,
score_threshold=score_threshold,
)
@classmethod
def _universal_id(cls, point_id: models.ExtendedPointId) -> tuple[str, int]:
if isinstance(point_id, str):
return point_id, 0
elif isinstance(point_id, int):
return "", point_id
raise TypeError(f"Incompatible point id type: {type(point_id)}")
[docs] def count(self, count_filter: Optional[types.Filter] = None) -> models.CountResult:
mask = self._payload_and_non_deleted_mask(count_filter)
return models.CountResult(count=np.count_nonzero(mask))
def _scroll_by_id(
self,
scroll_filter: Optional[types.Filter] = None,
limit: int = 10,
offset: Optional[types.PointId] = None,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
) -> tuple[list[types.Record], Optional[types.PointId]]:
sorted_ids = sorted(self.ids.items(), key=lambda x: self._universal_id(x[0]))
result: list[types.Record] = []
mask = self._payload_and_non_deleted_mask(scroll_filter)
for point_id, idx in sorted_ids:
if offset is not None and self._universal_id(point_id) < self._universal_id(offset):
continue
if len(result) >= limit + 1:
break
if not mask[idx]:
continue
result.append(
models.Record(
id=point_id,
payload=self._get_payload(idx, with_payload),
vector=self._get_vectors(idx, with_vectors),
)
)
if len(result) > limit:
return result[:limit], result[limit].id
else:
return result, None
def _scroll_by_value(
self,
order_by: types.OrderBy,
scroll_filter: Optional[types.Filter] = None,
limit: int = 10,
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
) -> tuple[list[types.Record], Optional[types.PointId]]:
if isinstance(order_by, grpc.OrderBy):
order_by = GrpcToRest.convert_order_by(order_by)
if isinstance(order_by, str):
order_by = models.OrderBy(key=order_by)
value_and_ids: list[tuple[OrderValue, ExtendedPointId, int]] = []
for external_id, internal_id in self.ids.items():
# get order-by values for id
payload_values = value_by_key(self.payload[internal_id], order_by.key)
if payload_values is None:
continue
# replicate id for each value it has
for value in payload_values:
ordering_value = to_order_value(value)
if ordering_value is not None:
value_and_ids.append((ordering_value, external_id, internal_id))
direction = order_by.direction if order_by.direction is not None else models.Direction.ASC
should_reverse = direction == models.Direction.DESC
# sort by value only
value_and_ids.sort(key=lambda x: x[0], reverse=should_reverse)
mask = self._payload_and_non_deleted_mask(scroll_filter)
result: list[types.Record] = []
start_from = to_order_value(order_by.start_from)
for value, external_id, internal_id in value_and_ids:
if start_from is not None:
if direction == models.Direction.ASC:
if value < start_from:
continue
elif direction == models.Direction.DESC:
if value > start_from:
continue
if len(result) >= limit:
break
if not mask[internal_id]:
continue
result.append(
models.Record(
id=external_id,
payload=self._get_payload(internal_id, with_payload),
vector=self._get_vectors(internal_id, with_vectors),
)
)
return result, None
def _sample_randomly(
self,
limit: int,
query_filter: Optional[types.Filter],
with_payload: Union[bool, Sequence[str], types.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
) -> list[types.ScoredPoint]:
mask = self._payload_and_non_deleted_mask(query_filter)
random_scores = np.random.rand(len(self.ids))
random_order = np.argsort(random_scores)
result: list[types.ScoredPoint] = []
for idx in random_order:
if len(result) >= limit:
break
if not mask[idx]:
continue
point_id = self.ids_inv[idx]
scored_point = construct(
models.ScoredPoint,
id=point_id,
score=float(0),
version=0,
payload=self._get_payload(idx, with_payload),
vector=self._get_vectors(idx, with_vectors),
)
result.append(scored_point)
return result
def _update_point(self, point: models.PointStruct) -> None:
idx = self.ids[point.id]
self.payload[idx] = deepcopy(
to_jsonable_python(point.payload) if point.payload is not None else {}
)
if isinstance(point.vector, list):
vectors = {DEFAULT_VECTOR_NAME: point.vector}
else:
vectors = point.vector
# dense vectors
for vector_name, _named_vectors in self.vectors.items():
vector = vectors.get(vector_name)
if vector is not None:
params = self.get_vector_params(vector_name)
assert not np.isnan(vector).any(), "Vector contains NaN values"
if params.distance == models.Distance.COSINE:
norm = np.linalg.norm(vector)
vector = np.array(vector) / norm if norm > EPSILON else vector
self.vectors[vector_name][idx] = vector
self.deleted_per_vector[vector_name][idx] = 0
else:
self.deleted_per_vector[vector_name][idx] = 1
# sparse vectors
for vector_name, _named_vectors in self.sparse_vectors.items():
vector = vectors.get(vector_name)
was_deleted = self.deleted_per_vector[vector_name][idx]
if not was_deleted:
previous_vector = self.sparse_vectors[vector_name][idx]
self._update_idf_remove(previous_vector, vector_name)
if vector is not None:
self.sparse_vectors[vector_name][idx] = vector
self.deleted_per_vector[vector_name][idx] = 0
self._update_idf_append(vector, vector_name)
else:
self.deleted_per_vector[vector_name][idx] = 1
# multivectors
for vector_name, _named_vector in self.multivectors.items():
vector = vectors.get(vector_name)
if vector is not None:
params = self.get_vector_params(vector_name)
assert not np.isnan(vector).any(), "Vector contains NaN values"
if params.distance == models.Distance.COSINE:
vector_norm = np.linalg.norm(vector, axis=-1)[:, np.newaxis]
vector /= np.where(vector_norm != 0.0, vector_norm, EPSILON)
self.multivectors[vector_name][idx] = np.array(vector)
self.deleted_per_vector[vector_name][idx] = 0
else:
self.deleted_per_vector[vector_name][idx] = 1
self.deleted[idx] = 0
def _add_point(self, point: models.PointStruct) -> None:
idx = len(self.ids)
self.ids[point.id] = idx
self.ids_inv.append(point.id)
self.payload.append(
deepcopy(to_jsonable_python(point.payload) if point.payload is not None else {})
)
assert len(self.payload) == len(self.ids_inv), "Payload and ids_inv must be the same size"
self.deleted = np.append(self.deleted, 0)
if isinstance(point.vector, list):
vectors = {DEFAULT_VECTOR_NAME: point.vector}
else:
vectors = point.vector
# dense vectors
for vector_name, named_vectors in self.vectors.items():
vector = vectors.get(vector_name)
if named_vectors.shape[0] <= idx:
named_vectors = np.resize(named_vectors, (idx * 2 + 1, named_vectors.shape[1]))
if vector is None:
# Add fake vector and mark as removed
fake_vector = np.ones(named_vectors.shape[1])
named_vectors[idx] = fake_vector
self.deleted_per_vector[vector_name] = np.append(
self.deleted_per_vector[vector_name], 1
)
else:
vector_np = np.array(vector)
assert not np.isnan(vector_np).any(), "Vector contains NaN values"
params = self.get_vector_params(vector_name)
if params.distance == models.Distance.COSINE:
norm = np.linalg.norm(vector_np)
vector_np = vector_np / norm if norm > EPSILON else vector_np
named_vectors[idx] = vector_np
self.vectors[vector_name] = named_vectors
self.deleted_per_vector[vector_name] = np.append(
self.deleted_per_vector[vector_name], 0
)
# sparse vectors
for vector_name, named_vectors in self.sparse_vectors.items():
vector = vectors.get(vector_name)
if len(named_vectors) <= idx:
diff = idx - len(named_vectors) + 1
for _ in range(diff):
named_vectors.append(empty_sparse_vector())
if vector is None:
# Add fake vector and mark as removed
fake_vector = empty_sparse_vector()
named_vectors[idx] = fake_vector
self.deleted_per_vector[vector_name] = np.append(
self.deleted_per_vector[vector_name], 1
)
else:
named_vectors[idx] = vector
self._update_idf_append(vector, vector_name)
self.sparse_vectors[vector_name] = named_vectors
self.deleted_per_vector[vector_name] = np.append(
self.deleted_per_vector[vector_name], 0
)
# multi vectors
for vector_name, named_vectors in self.multivectors.items():
vector = vectors.get(vector_name)
if len(named_vectors) <= idx:
diff = idx - len(named_vectors) + 1
for _ in range(diff):
named_vectors.append(np.array([]))
if vector is None:
# Add fake vector and mark as removed
named_vectors[idx] = np.array([])
self.deleted_per_vector[vector_name] = np.append(
self.deleted_per_vector[vector_name], 1
)
else:
vector_np = np.array(vector)
assert not np.isnan(vector_np).any(), "Vector contains NaN values"
params = self.get_vector_params(vector_name)
if params.distance == models.Distance.COSINE:
vector_norm = np.linalg.norm(vector_np, axis=-1)[:, np.newaxis]
vector_np /= np.where(vector_norm != 0.0, vector_norm, EPSILON)
named_vectors[idx] = vector_np
self.multivectors[vector_name] = named_vectors
self.deleted_per_vector[vector_name] = np.append(
self.deleted_per_vector[vector_name], 0
)
def _upsert_point(self, point: models.PointStruct) -> None:
if isinstance(point.id, str):
# try to parse as UUID
try:
_uuid = uuid.UUID(point.id)
except ValueError as e:
raise ValueError(f"Point id {point.id} is not a valid UUID") from e
if isinstance(point.vector, dict):
updated_sparse_vectors = {}
for vector_name, vector in point.vector.items():
if vector_name not in self._all_vectors_keys:
raise ValueError(f"Wrong input: Not existing vector name error: {vector_name}")
if isinstance(vector, SparseVector):
# validate sparse vector
validate_sparse_vector(vector)
# sort sparse vector by indices before persistence
updated_sparse_vectors[vector_name] = sort_sparse_vector(vector)
# update point.vector with the modified values after iteration
point.vector.update(updated_sparse_vectors)
else:
vector_names = list(self.vectors.keys())
multivector_names = list(self.multivectors.keys())
if (vector_names and vector_names != [""]) or (
multivector_names and multivector_names != [""]
):
raise ValueError(
"Wrong input: Unnamed vectors are not allowed when a collection has named vectors or multivectors: "
f"{vector_names}, {multivector_names}"
)
if not self.vectors and not self.multivectors:
raise ValueError(f"Wrong input: Not existing vector name error")
if point.id in self.ids:
self._update_point(point)
else:
self._add_point(point)
if self.storage is not None:
self.storage.persist(point)
[docs] def upsert(self, points: Union[Sequence[models.PointStruct], models.Batch]) -> None:
if isinstance(points, list):
for point in points:
self._upsert_point(point)
elif isinstance(points, models.Batch):
batch = points
if isinstance(batch.vectors, list):
vectors = {DEFAULT_VECTOR_NAME: batch.vectors}
else:
vectors = batch.vectors
for idx, point_id in enumerate(batch.ids):
payload = None
if batch.payloads is not None:
payload = batch.payloads[idx]
vector = {name: v[idx] for name, v in vectors.items()}
self._upsert_point(
models.PointStruct(
id=point_id,
payload=payload,
vector=vector,
)
)
else:
raise ValueError(f"Unsupported type: {type(points)}")
if len(self.ids) > self.LARGE_DATA_THRESHOLD:
show_warning_once(
f"Local mode is not recommended for collections with more than {self.LARGE_DATA_THRESHOLD:,} "
f"points. Current collection contains {len(self.ids)} points. "
"Consider using Qdrant in Docker or Qdrant Cloud for better performance with large datasets.",
category=UserWarning,
idx="large-local-collection",
stacklevel=6,
)
def _update_named_vectors(
self, idx: int, vectors: dict[str, Union[list[float], SparseVector]]
) -> None:
for vector_name, vector in vectors.items():
if isinstance(vector, SparseVector):
validate_sparse_vector(vector)
old_vector = self.sparse_vectors[vector_name][idx]
self._update_idf_remove(old_vector, vector_name)
new_vector = sort_sparse_vector(vector)
self.sparse_vectors[vector_name][idx] = new_vector
self._update_idf_append(new_vector, vector_name)
elif vector_name in self.vectors:
self.vectors[vector_name][idx] = np.array(vector)
else:
self.multivectors[vector_name][idx] = np.array(vector)
self.deleted_per_vector[vector_name][idx] = 0
[docs] def update_vectors(self, points: Sequence[types.PointVectors]) -> None:
for point in points:
point_id = point.id
idx = self.ids[point_id]
vector_struct = point.vector
if isinstance(vector_struct, list):
fixed_vectors = {DEFAULT_VECTOR_NAME: vector_struct}
else:
fixed_vectors = vector_struct
self._update_named_vectors(idx, fixed_vectors)
self._persist_by_id(point_id)
[docs] def delete_vectors(
self,
vectors: Sequence[str],
selector: Union[
models.Filter,
list[models.ExtendedPointId],
models.FilterSelector,
models.PointIdsList,
],
) -> None:
ids = self._selector_to_ids(selector)
for point_id in ids:
idx = self.ids[point_id]
for vector_name in vectors:
self.deleted_per_vector[vector_name][idx] = 1
self._persist_by_id(point_id)
def _delete_ids(self, ids: list[types.PointId]) -> None:
for point_id in ids:
idx = self.ids[point_id]
self.deleted[idx] = 1
if self.storage is not None:
for point_id in ids:
self.storage.delete(point_id)
def _filter_to_ids(self, delete_filter: types.Filter) -> list[models.ExtendedPointId]:
mask = self._payload_and_non_deleted_mask(delete_filter)
ids = [point_id for point_id, idx in self.ids.items() if mask[idx]]
return ids
def _selector_to_ids(
self,
selector: Union[
models.Filter,
list[models.ExtendedPointId],
models.FilterSelector,
models.PointIdsList,
],
) -> list[models.ExtendedPointId]:
if isinstance(selector, list):
return selector
elif isinstance(selector, models.Filter):
return self._filter_to_ids(selector)
elif isinstance(selector, models.PointIdsList):
return selector.points
elif isinstance(selector, models.FilterSelector):
return self._filter_to_ids(selector.filter)
else:
raise ValueError(f"Unsupported selector type: {type(selector)}")
[docs] def delete(
self,
selector: Union[
models.Filter,
list[models.ExtendedPointId],
models.FilterSelector,
models.PointIdsList,
],
) -> None:
ids = self._selector_to_ids(selector)
self._delete_ids(ids)
def _persist_by_id(self, point_id: models.ExtendedPointId) -> None:
if self.storage is not None:
idx = self.ids[point_id]
point = models.PointStruct(
id=point_id,
payload=self._get_payload(idx, with_payload=True, return_copy=False),
vector=self._get_vectors(idx, with_vectors=True),
)
self.storage.persist(point)
[docs] def set_payload(
self,
payload: models.Payload,
selector: Union[
models.Filter,
list[models.ExtendedPointId],
models.FilterSelector,
models.PointIdsList,
],
key: Optional[str] = None,
) -> None:
ids = self._selector_to_ids(selector)
jsonable_payload = deepcopy(to_jsonable_python(payload))
keys: Optional[list[JsonPathItem]] = parse_json_path(key) if key is not None else None
for point_id in ids:
idx = self.ids[point_id]
if keys is None:
self.payload[idx] = {**self.payload[idx], **jsonable_payload}
else:
if self.payload[idx] is not None:
set_value_by_key(payload=self.payload[idx], value=jsonable_payload, keys=keys)
self._persist_by_id(point_id)
[docs] def overwrite_payload(
self,
payload: models.Payload,
selector: Union[
models.Filter,
list[models.ExtendedPointId],
models.FilterSelector,
models.PointIdsList,
],
) -> None:
ids = self._selector_to_ids(selector)
for point_id in ids:
idx = self.ids[point_id]
self.payload[idx] = deepcopy(to_jsonable_python(payload)) or {}
self._persist_by_id(point_id)
[docs] def delete_payload(
self,
keys: Sequence[str],
selector: Union[
models.Filter,
list[models.ExtendedPointId],
models.FilterSelector,
models.PointIdsList,
],
) -> None:
ids = self._selector_to_ids(selector)
for point_id in ids:
idx = self.ids[point_id]
for key in keys:
if key in self.payload[idx]:
self.payload[idx].pop(key)
self._persist_by_id(point_id)
[docs] def clear_payload(
self,
selector: Union[
models.Filter,
list[models.ExtendedPointId],
models.FilterSelector,
models.PointIdsList,
],
) -> None:
ids = self._selector_to_ids(selector)
for point_id in ids:
idx = self.ids[point_id]
self.payload[idx] = {}
self._persist_by_id(point_id)
[docs] def batch_update_points(
self,
update_operations: Sequence[types.UpdateOperation],
) -> None:
for update_op in update_operations:
if isinstance(update_op, models.UpsertOperation):
if isinstance(update_op.upsert, models.PointsBatch):
self.upsert(update_op.upsert.batch)
elif isinstance(update_op.upsert, models.PointsList):
self.upsert(update_op.upsert.points)
else:
raise ValueError(f"Unsupported upsert type: {type(update_op.upsert)}")
elif isinstance(update_op, models.DeleteOperation):
self.delete(update_op.delete)
elif isinstance(update_op, models.SetPayloadOperation):
points_selector = update_op.set_payload.points or update_op.set_payload.filter
self.set_payload(update_op.set_payload.payload, points_selector)
elif isinstance(update_op, models.OverwritePayloadOperation):
points_selector = (
update_op.overwrite_payload.points or update_op.overwrite_payload.filter
)
self.overwrite_payload(update_op.overwrite_payload.payload, points_selector)
elif isinstance(update_op, models.DeletePayloadOperation):
points_selector = (
update_op.delete_payload.points or update_op.delete_payload.filter
)
self.delete_payload(update_op.delete_payload.keys, points_selector)
elif isinstance(update_op, models.ClearPayloadOperation):
self.clear_payload(update_op.clear_payload)
elif isinstance(update_op, models.UpdateVectorsOperation):
self.update_vectors(update_op.update_vectors.points)
elif isinstance(update_op, models.DeleteVectorsOperation):
points_selector = (
update_op.delete_vectors.points or update_op.delete_vectors.filter
)
self.delete_vectors(update_op.delete_vectors.vector, points_selector)
else:
raise ValueError(f"Unsupported update operation: {type(update_op)}")
[docs] def update_sparse_vectors_config(
self, vector_name: str, new_config: models.SparseVectorParams
) -> None:
if vector_name not in self.sparse_vectors:
raise ValueError(f"Vector {vector_name} does not exist in the collection")
self.config.sparse_vectors[vector_name] = new_config
[docs] def info(self) -> models.CollectionInfo:
return models.CollectionInfo(
status=models.CollectionStatus.GREEN,
optimizer_status=models.OptimizersStatusOneOf.OK,
vectors_count=None,
indexed_vectors_count=0, # LocalCollection does not do indexing
points_count=self.count().count,
segments_count=1,
payload_schema={},
config=models.CollectionConfig(
params=models.CollectionParams(
vectors=self.config.vectors,
shard_number=self.config.shard_number,
replication_factor=self.config.replication_factor,
write_consistency_factor=self.config.write_consistency_factor,
on_disk_payload=self.config.on_disk_payload,
sparse_vectors=self.config.sparse_vectors,
),
hnsw_config=models.HnswConfig(
m=16,
ef_construct=100,
full_scan_threshold=10000,
),
wal_config=models.WalConfig(
wal_capacity_mb=32,
wal_segments_ahead=0,
),
optimizer_config=models.OptimizersConfig(
deleted_threshold=0.2,
vacuum_min_vector_number=1000,
default_segment_number=0,
indexing_threshold=20000,
flush_interval_sec=5,
max_optimization_threads=1,
),
quantization_config=None,
),
)
[docs]def ignore_mentioned_ids_filter(
query_filter: Optional[types.Filter], mentioned_ids: list[types.PointId]
) -> types.Filter:
if len(mentioned_ids) == 0:
return query_filter
ignore_mentioned_ids = models.HasIdCondition(has_id=mentioned_ids)
if query_filter is None:
query_filter = models.Filter(must_not=[ignore_mentioned_ids])
else:
# as of mypy v1.11.0 mypy is complaining on deep-copied structures with None
query_filter = deepcopy(query_filter)
# as of mypy v1.11.0 mypy is complaining on deep-copied structures with None
if query_filter.must_not is None: # type: ignore[union-attr]
query_filter.must_not = [ignore_mentioned_ids] # type: ignore[union-attr]
else:
query_filter.must_not.append(ignore_mentioned_ids) # type: ignore[union-attr]
return query_filter
def _include_ids_in_filter(
query_filter: Optional[types.Filter], ids: list[types.PointId]
) -> types.Filter:
if len(ids) == 0:
return query_filter
include_ids = models.HasIdCondition(has_id=ids)
if query_filter is None:
query_filter = models.Filter(must=[include_ids])
else:
# as of mypy v1.11.0 mypy is complaining on deep-copied structures with None
query_filter = deepcopy(query_filter)
# as of mypy v1.11.0 mypy is complaining on deep-copied structures with None
if query_filter.must is None: # type: ignore[union-attr]
query_filter.must = [include_ids] # type: ignore[union-attr]
else:
query_filter.must.append(include_ids) # type: ignore[union-attr]
return query_filter
[docs]def record_to_scored_point(record: types.Record) -> types.ScoredPoint:
return types.ScoredPoint(
id=record.id,
version=0,
score=0,
payload=record.payload,
vector=record.vector,
order_value=record.order_value,
)
[docs]def set_prefetch_limit_recursively(prefetch: types.Prefetch, limit: int) -> types.Prefetch:
if prefetch is not None:
if isinstance(prefetch.prefetch, list):
return types.Prefetch(
limit=limit,
prefetch=[set_prefetch_limit_recursively(p, limit) for p in prefetch.prefetch],
)
else:
return types.Prefetch(limit=limit, prefetch=list())