qdrant_client.local.local_collection module
- class LocalCollection(config: CreateCollection, location: Optional[str] = None, force_disable_check_same_thread: bool = False)[source]
Bases:
objectLocalCollection is a class that represents a collection of vectors in the local storage.
- batch_update_points(update_operations: Sequence[Union[UpsertOperation, DeleteOperation, SetPayloadOperation, OverwritePayloadOperation, DeletePayloadOperation, ClearPayloadOperation, UpdateVectorsOperation, DeleteVectorsOperation]]) None[source]
- clear_payload(selector: Filter | list[Union[int, str, uuid.UUID]] | FilterSelector | PointIdsList) None[source]
- close() None[source]
- count(count_filter: Optional[Union[Filter, Filter]] = None) CountResult[source]
- delete(selector: Filter | list[Union[int, str, uuid.UUID]] | FilterSelector | PointIdsList) None[source]
- delete_payload(keys: Sequence[str], selector: Filter | list[Union[int, str, uuid.UUID]] | FilterSelector | PointIdsList) None[source]
- delete_vectors(vectors: Sequence[str], selector: Filter | list[Union[int, str, uuid.UUID]] | FilterSelector | PointIdsList) None[source]
- discover(target: Optional[Union[List[float], SparseVector, List[List[float]], int, str, UUID, Document, Image, InferenceObject]] = None, context: Optional[Sequence[ContextPair]] = None, query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, using: Optional[str] = None, lookup_from_collection: Optional[LocalCollection] = None, lookup_from_vector_name: Optional[str] = None, score_threshold: Optional[float] = None) list[ScoredPoint][source]
- facet(key: str, facet_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10) FacetResponse[source]
- get_vector_params(name: str) VectorParams[source]
- info() CollectionInfo[source]
- load_vectors() None[source]
- overwrite_payload(payload: Dict[str, Any], selector: Filter | list[Union[int, str, uuid.UUID]] | FilterSelector | PointIdsList) None[source]
- query_groups(group_by: str, query: Optional[Union[int, str, UUID, PointId, list[float], list[list[float]], SparseVector, NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, RrfQuery, FormulaQuery, SampleQuery, ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], Document, Image, InferenceObject]] = None, using: Optional[str] = None, prefetch: Optional[Union[Prefetch, list[Prefetch]]] = None, query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10, group_size: int = 3, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[Union[str, WithLookup]] = None, with_lookup_collection: Optional[LocalCollection] = None) GroupsResult[source]
- query_points(query: Optional[Union[NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, RrfQuery, FormulaQuery, SampleQuery]] = None, prefetch: Optional[list[Prefetch]] = None, query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, using: Optional[str] = None, **kwargs: Any) QueryResponse[source]
Queries points in the local collection, resolving any prefetches first.
Assumes all vectors have been homogenized so that there are no ids in the inputs
- recommend(positive: Optional[Sequence[Union[List[float], SparseVector, List[List[float]], int, str, UUID, Document, Image, InferenceObject]]] = None, negative: Optional[Sequence[Union[List[float], SparseVector, List[List[float]], int, str, UUID, Document, Image, InferenceObject]]] = None, query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10, offset: int = 0, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from_collection: Optional[LocalCollection] = None, lookup_from_vector_name: Optional[str] = None, strategy: Optional[RecommendStrategy] = None) list[ScoredPoint][source]
- recommend_groups(group_by: str, positive: Optional[Sequence[Union[List[float], SparseVector, List[List[float]], int, str, UUID, Document, Image, InferenceObject]]] = None, negative: Optional[Sequence[Union[List[float], SparseVector, List[List[float]], int, str, UUID, Document, Image, InferenceObject]]] = None, query_filter: Optional[Filter] = None, limit: int = 10, group_size: int = 1, score_threshold: Optional[float] = None, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude] = True, with_vectors: Union[bool, Sequence[str]] = False, using: Optional[str] = None, lookup_from_collection: Optional[LocalCollection] = None, lookup_from_vector_name: Optional[str] = None, with_lookup: Optional[Union[str, WithLookup]] = None, with_lookup_collection: Optional[LocalCollection] = None, strategy: Optional[RecommendStrategy] = None) GroupsResult[source]
- retrieve(ids: Sequence[int | str | uuid.UUID | qdrant_common_pb2.PointId], with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False) list[Record][source]
- scroll(scroll_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10, order_by: Optional[Union[str, OrderBy, OrderBy]] = None, offset: Optional[Union[int, str, UUID, PointId]] = None, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False) tuple[list[Record], int | str | uuid.UUID | qdrant_common_pb2.PointId | None][source]
- search(query_vector: list[float] | tuple[str, list[float]] | list[list[float]] | tuple[str, list[list[float]]] | NamedVector | NamedSparseVector | DiscoveryQuery | ContextQuery | RecoQuery | tuple[str, DiscoveryQuery | ContextQuery | RecoQuery] | SparseVector | qdrant_client.local.sparse_distances.SparseDiscoveryQuery | qdrant_client.local.sparse_distances.SparseContextQuery | qdrant_client.local.sparse_distances.SparseRecoQuery | tuple[str, SparseVector | qdrant_client.local.sparse_distances.SparseDiscoveryQuery | qdrant_client.local.sparse_distances.SparseContextQuery | qdrant_client.local.sparse_distances.SparseRecoQuery] | qdrant_client.local.multi_distances.MultiDiscoveryQuery | qdrant_client.local.multi_distances.MultiContextQuery | qdrant_client.local.multi_distances.MultiRecoQuery | tuple[str, qdrant_client.local.multi_distances.MultiDiscoveryQuery | qdrant_client.local.multi_distances.MultiContextQuery | qdrant_client.local.multi_distances.MultiRecoQuery] | numpy.ndarray[tuple[int, ...], numpy.dtype[Union[numpy.bool, numpy.int8, numpy.int16, numpy.int32, numpy.int64, numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64, numpy.float16, numpy.float32, numpy.float64, numpy.longdouble]]], query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 10, offset: Optional[int] = None, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude, WithPayloadSelector] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None) list[ScoredPoint][source]
- search_groups(query_vector: Union[Sequence[float], list[list[float]], tuple[str, Union[List[float], SparseVector, List[List[float]], Document, Image, InferenceObject, RecoQuery, qdrant_client.local.sparse_distances.SparseRecoQuery, qdrant_client.local.multi_distances.MultiRecoQuery, numpy.ndarray[tuple[int, ...], numpy.dtype[Union[numpy.bool, numpy.int8, numpy.int16, numpy.int32, numpy.int64, numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64, numpy.float16, numpy.float32, numpy.float64, numpy.longdouble]]]]], NamedVector, NamedSparseVector, RecoQuery, SparseRecoQuery, MultiRecoQuery, ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]]], group_by: str, query_filter: Optional[Filter] = None, limit: int = 10, group_size: int = 1, with_payload: Union[bool, Sequence[str], PayloadSelectorInclude, PayloadSelectorExclude] = True, with_vectors: Union[bool, Sequence[str]] = False, score_threshold: Optional[float] = None, with_lookup: Optional[Union[str, WithLookup]] = None, with_lookup_collection: Optional[LocalCollection] = None) GroupsResult[source]
- search_matrix_offsets(query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None) SearchMatrixOffsetsResponse[source]
- search_matrix_pairs(query_filter: Optional[Union[Filter, Filter]] = None, limit: int = 3, sample: int = 10, using: Optional[str] = None) SearchMatrixPairsResponse[source]
- set_payload(payload: Dict[str, Any], selector: Filter | list[Union[int, str, uuid.UUID]] | FilterSelector | PointIdsList, key: Optional[str] = None) None[source]
- update_sparse_vectors_config(vector_name: str, new_config: SparseVectorParams) None[source]
- update_vectors(points: Sequence[PointVectors], update_filter: Optional[Union[Filter, Filter]] = None) None[source]
- upsert(points: Union[Sequence[PointStruct], Batch], update_filter: Optional[Union[Filter, Filter]] = None) None[source]
- ignore_mentioned_ids_filter(query_filter: Filter | qdrant_common_pb2.Filter | None, mentioned_ids: list[int | str | uuid.UUID | qdrant_common_pb2.PointId]) Filter | qdrant_common_pb2.Filter[source]
- record_to_scored_point(record: Record) ScoredPoint[source]
- set_prefetch_limit_iteratively(prefetch: Prefetch | list[Prefetch], limit: int) None[source]
Set .limit on all nested Prefetch objects without recursion.
- to_jsonable_python(x: Any) Any[source]